Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Quantum Gravity

This series consists of talks in the area of Quantum Gravity.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.
 

 

Jeudi oct 22, 2020
Speaker(s): 

I will discuss the recent Hamiltonian derivation of dual BMS charges at null infinity using the first order formalism.  More generally, I will discuss how this idea can be used to classify asymptotic charges in gravity.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 15, 2020
Speaker(s): 

Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to say that there are no feasible ideas yet to test the quantum coherent behaviour of gravity directly in a laboratory experiment. Here, I will introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 08, 2020
Speaker(s): 

I discuss general argument to show that if a physical system can mediate locally the generation of entanglement between two quantum systems, then it itself must be non-classical. Remarkably, the argument does not assume any classical or quantum formalism to describe the mediating physical system: the result follows from general information-theoretic principles. This argument provides a robust and general theoretical basis for recently proposed tests of non-classicality in gravity, based on witnessing gravitationally-induced entanglement in quantum probes.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi oct 01, 2020
Speaker(s): 

Renormalisation in curved spacetimes is an involved subject. In contrast to renormalisation in a flat spacetime, the standard momentum representation is not directly available. Nevertheless, the momentum dependence of correlation functions is crucial to deciding whether a theory is unitary and causal. I will discuss how to define a notion of momentum dependence in gravity on a fundamental level. With this at hand, one can discuss an important quantum field theory observable: scattering cross sections.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi sep 24, 2020
Speaker(s): 

The Raychaudhuri equation predicts the convergence of geodesics and gives rise to the singularity theorems. The quantum Raychaudhuri equation (QRE), on the other hand, shows that quantal trajectories, the quantum equivalent of the geodesics, do not converge and are not associated with any singularity theorems. Furthermore, the QRE gives rise to the quantum corrected Friedmann equation. The quantum correction is dependent on the wavefunction of the perfect fluid whose pressure and density enter the Friedmann equation.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi sep 17, 2020
Speaker(s): 

We will argue that even with semiclassical gravity, it can be shown that a copy of  all the information on a Cauchy slice resides near the boundary of the slice. We will first demonstrate this in asymptotically global AdS, and then in four-dimensional asymptotically flat space. We will then describe a physical protocol that can be used to verify this property at low-energies and within perturbation theory.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi sep 10, 2020
Speaker(s): 

The computation of transition amplitudes in Loop Quantum Gravity is still a hard task, especially without resorting to large-spins approximations. In Marseille we are actively developing a C library (sl2cfoam) to compute Lorentzian EPRL amplitudes with many vertices. We have already applied this tool to obtain interesting results in spinfoam cosmology and on the so-called flatness problem of spinfoam models.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi mai 28, 2020
Speaker(s): 

Since the seminal work of Penrose, it has been understood that conformal compactifications (or "asymptotic simplicity") is the geometrical framework underlying Bondi-Sachs' description of asymptotically flat space-times as an asymptotic expansion. From this point of view the asymptotic boundary, a.k.a "null-infinity", naturally is a conformal null (i.e degenerate) manifold. In particular, "Weyl rescaling" of null-infinity should be understood as gauge transformations.

Collection/Series: 
Scientific Areas: 
 

 

Jeudi mai 21, 2020
Speaker(s): 

Using a definition of bulk diff-invariant observables, we go into the bulk of 2d Jackiw-Teitelboim gravity. By mapping the computation to a Schwarzian path integral, we study exact bulk correlation functions and discuss their physical implications. We describe how the black hole thermal atmosphere gets modified by quantum gravitational corrections. Finally, we will discuss how higher topological effects further modify the spectral density and detector response in the Unruh heat bath. 

Collection/Series: 
Scientific Areas: 
 

 

Jeudi mai 14, 2020
Speaker(s): 

We introduce a new technique to study the critical point equations of the eprl model. We show that it correctly reproduces the 4-simplex asymptotics, and how to apply it to an arbitrary vertex. We find that for general vertices, the asymptotics can be linked to a Regge action for polytopes, but contain also more general geometries, called conformal twisted geometries. We present explicit examples including the hypercube, and discuss implications.

Collection/Series: 
Scientific Areas: 

Pages