Recording Details
Speaker(s):
Scientific Areas:
Collection/Series:
PIRSA Number:
17080011
Abstract
It is well known that commutative Frobenius algebras can be represented as topological surfaces, using the graphical calculus of dualizable objects in monoidal 2-categories. We build on related ideas to show that the interacting Frobenius algebras of Duncan and Dunne, which have a Hopf algebra structure, arise naturally in a similar way, by requiring a single 3-morphism in a 3-category to be invertible. We show that this gives a purely geometrical proof of Mueger's version of Tannakian reconstruction of Hopf algebras from fusion categories equipped with a fibre functor. We also relate our results to the theory of lattice code surgery.