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Abstract. The topology and geometry of random fields — in terms of the Euler characteristic
and the Minkowski functionals — has received a lot of attention in the context of the Cosmic
Microwave Background (CMB), as the detection of primordial non-Gaussianities would form
a valuable clue on the physics of the early Universe. The virtue of both the Euler char-
acteristic and the Minkowski functionals in general, lies in the fact that there exist closed
form expressions for their expectation values for Gaussian random fields. However, the Eu-
ler characteristic and Minkowski functionals are summarizing characteristics of topology and
geometry. Considerably more topological information is contained in the homology of the ran-
dom field, as it completely describes the creation, merging and disappearance of topological
features in superlevel set filtrations.

In the present study we extend the topological analysis of the superlevel set filtrations
of two-dimensional Gaussian random fields by analysing the statistical properties of the Betti
numbers — counting the number of connected components and loops — and the persistence
diagrams — describing the creation and mergers of homological features. Using the link be-
tween homology and the critical points of a function — as illustrated by the Morse-Smale
complex — we derive a one-parameter fitting formula for the expectation value of the Betti
numbers and forward this formalism to the persistent diagrams. We, moreover, numerically
demonstrate the sensitivity of the Betti numbers and persistence diagrams to the presence of
non-Gaussianities.


mailto:jfeldbrugge@perimeterinstitute.ca

Contents

1 Introduction 1
2 Random fields: definitions, probabilities & singularities 6
2.1 Gaussian random fields 6
2.1.1 Multiscale Field Structure & Fourier Components 8
2.2 Non-Gaussian Random Fields 8
2.3 Critical Points 9
2.3.1  Critical Point Densities 10
3 Homology and Persistence:
Topological Structure of Random fields 11
3.1 Random Field Realizations and Manifolds 13
3.2 Filtrations and Superlevel Sets 13
3.3 Homology of Random Fields: Betti numbers 13
3.4 Betti, Euler, and Genus 15
3.5 Persistence Diagrams 17
4 The Graph Formalism & Betti Number Statistics 19
4.1 Morse-Smale Complex 20
4.2 Morse-Smale Graph 23
4.3 The Incremental Algorithm:
Graphic Extraction of Homological Information 24
4.4 Approximating the Probability g 25
4.5 Numerical Validation of g 27
5 Statistics of Persistence diagrams of Random Fields 27
6 Non-Gaussian Random Fields: Persistence & Betti numbers 30
7 Conclusion and Discussion 34
A Concepts of Homology theory 41
A.1 Simplices 41
A.2 Chains and the Boundary Operator 42
A.2.1 Chain 42
A.2.2 Boundary & Boundary Operator 42
A.3 Homology Groups and Betti Numbers 43
A.4 Example 44

1 Introduction

The Cosmic Microwave Background (CMB) radiation field is one of the principal cosmological
probes, it is the source of revolutionary new insights into the physics of the early Universe and
the hitherto unimaginable accurate measurement of cosmological quantities that ushered the
era of precision cosmology (see [1-4]). The radiation field is a relic of an early dense phase



of our Universe in which the Universe was filled with a hot photon-electron plasma. The
primordial radiation field consists of a near perfect uniform radiation field with a blackbody
spectrum with a temperature of Ty = 2.725K |5, 6]. Perhaps the most outstanding property
of this radiation field is the tiny temperature fluctuations with an amplitude in the order of
10~°. The statistical properties of these fluctuations represent a true treasure trove of cosmo-
logical information, and form a direct reflection of processes that took place in the very early
Universe. As evidenced by a range of CMB observations, the CMB temperature fluctuations
and the corresponding mass density fluctuations, turn out to be close to a homogeneous and
isotropic Gaussian random field [7-12|. The statistical properties of Gaussian random fields
have been the subject of a range of fundamental studies [13-16]. Statistically, Gaussian fields
are completely described in terms of their autocorrelation function or power spectrum. Cos-
mological properties such as the curvature of space, the energy content and the expansion
rate determine the functional form of the power spectrum, so that one may infer constraints
on these from the CMB measurements.

Recent analyses of the Planck satellite data have set stringent limits on the level of
possible deviations from Gaussianity of the primordial density field [11, 12, 17|. The detection
of non-Gaussian perturbations will have major repercussions for our understanding of the
physical processes at the beginning of the Universe, in particular at its inflationary epoch
[10, 18-21]. There has been a considerable effort into determining the level and nature
of these primordial non-Gaussianities, but these have not led to any significant detection
[12]. A considerable fraction of these studies is based on the measurement of the three-point
and four-point correlation function, or of their Fourier-space equivalents of the bispectrum
and trispectrum. They concentrate on a restricted set of deviations from Gaussianity, most
notably the local, enfolded, equilateral and orthogonal templates for the bispectrum.

Most of the present searches for primordial non-Gaussianities have been focused at de-
tecting deviations of an a priori known form. In the light of the failure to detect such signals,
an arguably more profitable and objective approach would be to use a probe that is sensitive
to generic non-Gaussian perturbations. We base ourselves on the idea that the geometry and
topology of the primordial field is potentially one of the most direct and sensitive statistics,
as it captures both the morphology, spatial distribution and connectivity between individual
topological features in the primordial density field. It is these aspects that are very sensitive
to the nature of the random field [see e.g. 22, 23]. In fact, preliminary indications for this
might be the mildly unusual behaviour of the Euler characteristic pointed out by Eriksen et
al. [24] and Park et al. [17].

Topology is the branch of mathematics that addresses the shapes, boundaries and con-
nectivity of structural features in a field. Traditionally the Minkowski functionals, which
include the genus and the Euler characteristic, have been used to study the topology, mor-
phology and geometry of cosmological density fluctuations [15, 25-29]. For the study of
Gaussian random fields, these topological and geometric measures have the virtue that there
exist closed analytical expressions for their expectation values as a function of the field’s den-
sity level [14, 15, 22, 28, 30, 31]. While potential primordial non-Gaussianities might have
expressed themselves via deviations from these statistical distribution functions [32, 33], no
significant signals have been detected [see 17, 24, 34-40]. Nonetheless, while the Minkowski
functionals have been instructive, the topological information contained in them is limited and
convolved with geometric information. Moreover, they are not equipped to address the hier-
archical aspects of the matter distribution directly. Recent advances in the field of algebraic
and computational topology [see e.g. 41, 42| have opened the possibility to infer informa-



tion on the contribution of individual features on the overall structural patterns, in terms of
persistent topology and Betti numbers.

In this study we therefore focus on the topological characterization of the cosmic mass
(and temperature) distribution in terms of Betti numbers [43] and persistence diagrams
[41, 42]. These are homology measures, concepts of algebraic and computational topology,
describing in a quantitative manner how features in a manifold are connected through their
boundaries [44]. It concerns a language to assess the multiscale nature of the topology of the
megaparsec cosmic mass distribution. Betti numbers are topological invariants that formalize
the topological information content of the cosmic mass distribution by counting features in
terms of the number of p-dimensional holes [42, 45-48|. For two-dimensional manifolds, the
zeroth Betti number counts the number of disjoint components, while the first Betti number
counts the number of inequivalent loops enclosing troughs. One often does not differentiate
between the loops and the troughs they enclose. It is important to appreciate that the homo-
logical measures (with the exception of the Euler characteristic) are fundamentally non-local
as they depend on the correlation and connectivity of critical points in the random field.
While homology and the Betti numbers do not fully quantify the topology of a manifold!,
they extend the information beyond conventional cosmological studies of topology in terms
of genus and Euler characteristics.

The profound significance of Betti numbers is underlined by their intimate relationship
to the singularity structure and connectivity of the cosmic density field. Van de Weygaert
and collaborators [49, 50| introduced the concept of homology and Betti numbers in a cosmo-
logical context, in a study of Betti number systematics in a range of weblike spatial galaxy
distributions. This was followed up by recent studies that invoked homology in a cosmological
context along more systematic and formalized lines [22, 50-52]. The Betti numbers provide
a summary of information on the topology of the cosmic mass distribution. A more detailed,
extensive and profound representation of related topological information is that of persistence
[41, 42]

Persistence describes the formation and demise of individual topological features such as
“islands”; and “troughs” in the primordial density field, as we see them connecting and merging
with surrounding topological features at different density levels. Introduced by Edelsbrunner
[41], persistence describes the density range over which topological features exist and hence
reflects its multiscale character?. By focussing on the topological significance of features
instead of their spatial scale, it provides a natural means of identifying structures over a
range of scales without having to invoke artificial filters. Adding to its significance is the fact
that it is intimately coupled to the singularity structure of the density field. This reflects the
notion, stemming from Morse theory [53, 54|, that the existence of and connectivity between
topological features is determined by the location and nature of critical points — i.e., the
maxima, minima and saddle points — in the scalar field. In other words, persistence provides
us with the mathematical language for assessing and analyzing the hierarchy of topological
structure in a density field.

Recent years have seen a proliferation of scientific studies invoking persistent topology
to characterize the complexity of a large diversity of systems and processes (see [48] for a

!One can change the topology without changing the homology of a manifold by removing a ‘hole’ in one
component of the manifold and introducing a ‘hole’ in another connected component. The full topological
information is captured in the homotopy. However, the homotopy is currently computationally out of reach.

2Note that persistence can be invoked for any scalar field.



recent review), ranging from brain research [55, 56|, materials science [57] to astrophysics
and cosmology. Sousbie et al. [51, 58|, Shivashankar et al. [59], and Pranav et al. [52]
invoke persistence with the purpose to characterize the spine of the cosmic web [60—64] and
its connectivity structure. Recently, Kimura et al. [65] determined persistence diagrams for
(small) volume-limited samples of the DR12 release of the SDSS galaxy redshift survey in
an attempt to characterize the topology of the spatial galaxy distribution, while Xu et al.
[66] used persistence to identify individual voids and filaments in heuristic models of the
cosmic matter distribution [also see 59]. At a more fundamental level, Codis et al. [67]
based their assessment of the connectivity of the nodes of the cosmic web on the persistent
characterization of the cosmic web’s spine. The concept of persistence and Betti numbers also
offer a natural means of following the evolving topology of the reionization bubble network
[68]. In another astrophysical context, they were used to describe the topological structure
of interstellar magnetic fields [69].

The main purpose of the present study is the formulation and inference of analytical
descriptions and expressions of key topological characteristics, in particular Betti numbers
and topological persistence of two-dimensional random fields on R?. For an early report
on this study we refer to [70]. To this end, we specifically concentrate on Gaussian random
fields, and on possible small non-Gaussian deviations. The accompanying extensive numerical
analysis of Gaussian field homology is described in [22, 23|. While fully analytical expressions
for the Euler characteristic and the Minkowski functionals of Gaussian random fields exist
[14, 15, 22, 28, 30|, to date no closed analytical expressions for topological quantities such as
Betti numbers have been derived. All indications are that this may remain so [see e.g. 22, 71].
While there are some high level, asymptotic results about Betti numbers for high density
thresholds of Gaussian excursion sets in the mathematical literature, these are a consequence
of the simple structure of Gaussian fields at these levels. As a consequence, nearly without
exception, the information on Betti numbers is obtained indirectly, through numerical and
statistical evaluations [22, 29|. The Gaussian Kinematic Formula (GKF) implies that the
Minkowski functionals and the Euler characteristic can be expressed as integrals of local
functionals [see 16, 22|. This is not true for topological quantities, for which the localization
is crucial. Note that the Euler characteristics is an exception, as it can be written as the
oscillating sum of the critical point densities. From a geometric perspective, while the Euler
characteristic is topological, it can with the Gauss-Bonnet theorem be expressed in terms of
a local characterization of the curvature.

Motivated by the benefit of having an insightful and versatile analytical expression for
Betti numbers and persistence diagrams, for Gaussian random fields, the present study follows
an alternative route for inferring an accurate approximate formula. To this end, we follow
a graph theoretical approach to Morse theory, developing path integral expressions via the
connectivity of singularities — maxima, minima, and saddle points — in a Gaussian random
field [also see 70]. While it is not trivial to convert the Morse formalism into concise formulae
such as entailed in the Gaussian Kinematic Formula [16], in this study we demonstrate that
the numerically evaluated approximate expressions for the two-dimensional Betti numbers
turns out to be remarkably accurate.

Morse theory is the branch of mathematics that studies the singularity structure of a
scalar field, i.e., the positions and connectivity of minima, maxima and saddle points. Of
fundamental importance is Morse theory’s principal topological tenet that there is a close
relationship between the topology of the space and the critical points of any smooth function



on the topological space [42, 53, 54]. Following this realization, Morse theory describes the
topology of the space by studying the critical points of a corresponding Morse function, i.e,
a smooth scalar function defined on the topological space with no degenerate critical points.
Of particular interests are the observations that submanifolds defined as the regions where
the Morse function is in excess of a particular functional threshold value, i.e., superlevel sets,
are topologically equivalent when the interval between the two defining threshold values does
not contain any critical point. The important implication of this is that all changes in the
topology of a space occur only at critical points.

The close relation between the topology of a manifold and the spatial distribution of
singularities finds its expression in the Morse-Smale complex [72]. It is the segmentation
of space defined by the spatial distribution of the singularities, consisting of regions which
connect minima and maxima via the field’s integral lines. To formalize the connections
between the singularities in the Morse-Smale complex, we introduce the concept of the Morse
Graph. The graph is a diagrammatic representation of the connectivity structure of the Morse-
Smale complex. We subsequently investigate the topological structure of the field using the
incremental algorithm 73], which defines a filtration process to follow the addition and removal
of topological features as new singularities in the Morse graph are included. In combination
with the analytically known field distribution functions for the maxima, minima, and saddles
in a Gaussian random field, we are led to the integral expressions for the Betti numbers as
well as the persistence diagrams of Gaussian random fields. By investigating the asymptotic
behaviour of the Betti numbers we are then able to infer an accurate fitting function. Note
that these analytical expressions have been derived on the basis of a probabilistic calculation,
and do not involve and resort to realizations of Gaussian random fields.

Having established accurate analytical expressions for the Betti numbers of Gaussian
random fields, and the corresponding integral expressions for persistence diagrams, we sub-
sequently investigate the sensitivity of persistent Betti numbers and persistence diagrams on
the presence of (subtle) non-Gaussianities in two-dimensional random fields. In this study, we
restrict our numerical study to the local template version of the primordial non-Gaussianities
and explore the changes in Betti numbers and persistence diagrams as a function of the non-
Gaussianity parameter fyz, [see 10]. The results of this analysis do underline the considerable
potential for exploiting these instruments for a more profound topological data analysis of the
cosmic microwave background — and other cosmological probes — for assessing the presence of
primordial non-Gaussianities. A few earlier studies already indicated this potential [74, 75].
In fact, the recent study by Pranav et al. [76] reports on the detection of possibly anomalous
topological signatures in the Planck CMB maps.

In section 2, we introduce basic concepts of (Gaussian) random fields, in particular
focusing on the singularities in a random field and their statistical properties in a Gaussian
random field. In section 3, we discuss and describe the key concepts of homology, Betti
numbers and persistence diagrams. In section 4, we embark on the statistical properties of
Betti numbers, following the description of the Morse-Smale complex for Gaussian fields,
the introduction of Morse graphs, and the use of the incremental algorithm in conjunction
with Gaussian field singularity statistics to derive integral expressions for Betti numbers.
We conclude this section with the derivation of an accurate analytical fitting formula for
Betti numbers. Extending this analysis to the larger information content of the multiscale
topological properties of Gaussian fields represented by persistence diagrams is the topic of
section 5. Finally, we turn towards the potential of Betti numbers and persistence diagrams



towards the detection of non-Gaussianities in section 6. The conclusions of this study are
summarized and discussed in section 7.

2 Random fields: definitions, probabilities & singularities

Throughout this paper we describe the topology of random fields, whereby we largely follow
the notation introduced by [15] [also see 77|. A typical example of a random field in the
context of cosmology is the three-dimensional density perturbation field

p(X,1) — pu(lt)
pult) ’

with p(x,t) the density at location x € R? at time ¢, and p,(t) the universal cosmological
density for that cosmic epoch. In the present study we consider the primordial temperature
fluctuations §7'(x) of the current cosmic microwave background (CMB) temperature field T'(x)
at sky position x € S? with respect to the current global CMB temperature Ty = 2.726K [6],

T(X) — To
Th '

Ip(x,t) = (2.1)

0T (x) = (2.2)
The temperature field T is a two-dimensional imprint of the density field p at the time
of last scattering when our Universe became neutral. As a consequence, the temperature
perturbation 87 is a realization of a random field on the 2-sphere S?. However, since our
study of random fields is local, we for simplicity restrict the current analysis to random fields
[f] on Euclidean space R2.

Important for the cosmological context of the random fields is the statistical cosmological
principle, which states that the statistical properties of the cosmic density distribution in our
Universe are uniform throughout space 3. In other words, the distribution function and
moments of a field are the same in each direction and at each location, with the direct
implication of the ensemble averages being dependent only on the distance between points.

To high accuracy, the primordial density perturbation dp, and the CMB temperature
fluctuation field 67" — which is a reflection of former — are realizations of Gaussian random fields
[2, 3], whose statistical character is fully specified by their first and second order moment.
In this study, we largely focus on two-dimensional Gaussian random fields. However, the
framework extends naturally to more general random fields which include non-Gaussianities.
The detection or stringent bounds on primordial non-Gaussianities in the CMB are expected
to lead to major improvements in our understanding of the early Universe [see 78-85].

2.1 Gaussian random fields

The random fields f(x) studied in this paper are assumed to be smooth and continuous*. We
generalize our study to any field f(x) that is a linear functional L[g] of a random field g(x),

f(x) = Llg;x]. (2:3)

3Also crucial for the cosmological reality is the ergodic principle. Based on this we are able to measure
the value of ensemble averages by means of spatial averages: these will be equal to the expectations over
an ensemble of Universes. Given the fact that the Universe is unique, and its density distribution the only
realization we have of the underlying probability distribution, this is of key significance for the ability to test
theoretical predictions for stochastic processes like the cosmic mass distribution with observational reality.

“In this section, the fields f(x) may either be the raw unfiltered field or, without loss of generality, a filtered
field f.(x). A filtered field is a convolution with a filter kernel W (x,y), fs(x) = [ dyf(y)W(x,y).




Examples of such functionals are the value of the field itself at the point x, the gradient of
the field g(x), its Hessian, and more generally a convolution of g(x) with a kernel function
h(x),

o = 909 Lo = JL005 Lol = 50090 )
Lelgix] = /h(X—XC)g(Xc)ch-
A random field f is defined by its N-point joint probability,
Px(f)df = Prob[f(x;) € [fi, fi + dfi], i=1,...,N], (2.5)

the probability that a realization assumes a value in the interval [f;, f; + dfi], at the locations
x; for 1 <4 < N. Throughout this paper, we use the shorthand x = (x1,x2,--- ,xy) for the
N points x; and the vector £ = (f1, fo, ..., fnv) for the corresponding field values.

A Gaussian random field is fully described by the first and second order moment, as can
be seen from the probability distribution of a Gaussian random field with zero mean

Zv

, (2.6)

_ exp [-fMHT)/2]
P = (or)
exp % fz ki
|

J

(2m)N (det M)]V/2

with M~! the inverse of the N x N covariance matrix M, i.e.,
Mij = (f(xi)f(x5)) = &(xi —x;), (2.7)

with the angle bracket denoting the ensemble average and the autocorrelation function £(r)
[see 14-16|. The covariance matrix M is the N-dimensional generalization of the variance o
of the one-point Gaussian distribution,

o = (f(x)f(x). (2.8)

V)

The prefactor [(2m)" (det M)] 2 equation (2.6) normalizes the distribution, i.e.,

/Px(f)de =1. (2.9)

Given the fact that cosmological random fields obey the statistical cosmological principle,
i.e., the fields are statistically isotropic and homogeneous, the correlation function £(r) only
depends on the distance r = ||r|| between points,

§(r) = &(r). (2.10)

With respect to the higher order correlation functions, it is straightforward to infer from the
distribution (2.6) that they can be expressed in terms of the two-point correlation function.



According to Wick’s theorem, the odd correlation functions vanish, while the even correlation
function are given by the sum of the product of all possible pairings of points, i.e.,

(f(x1) f(x2) f(x3) f(x4)) = &(r12)&(r3a) + E(r13)€(r24) + E(r14)€(r23) (2.11)
(f(x1) f(x2) f(x3)f(x4)f(x5)) =0,
with 7;; = [|x; — x;||. Finally, it is important to note that when f(x) is Gaussian random

field, so too are the linear functionals L[f] of the field. Ie. the gradient, Hessian and higher
order gradients of a Gaussian field are themselves Gaussian fields.

2.1.1 Multiscale Field Structure & Fourier Components

The multiscale structure of a Gaussian random field is most transparently described in terms
of the Fourier components f(k) of the field f(x),

f(x) = / (;:)3 f(k) e kx, (2.12)

In terms of the Fourier components of the field, the second order character of a Gaussian
field is fully specified by the Fourier transform of the correlation function £(r), known as the
power spectrum P(k),

Pl = [ etre 5, (213)

which can be interpreted as the two point function of the Fourier modes

(f)f(K) = (2m)° P(k)op(k — X'), (2.14)

with the magnitude & = | k| and the Dirac delta function dp [see 77, 86]. Note that the
correlation function in Fourier space is diagonal, i.e., (f(k)f(kK')) = 0 for k # k',

The power spectrum P(k) describes the prominence of the Fourier component at scale
~ 27t /k in the field f(x), by means of the square of the average amplitude of that component.
Cosmologically speaking, this is a factor of central significance: the power spectrum fully
specifies the nature of the primordial density and velocity field, out of which all structure
in the cosmos emerges, and is itself a direct manifestation of processes in the very early

(inflationary) Universe.

2.2 Non-Gaussian Random Fields

A Gaussian random field is completely determined by the power spectrum or two-point corre-
lation function. The higher order correlation functions can, with Wick’s theorem, be expressed
in term of the two-point function. For more general non-Gaussian random fields, the higher
order correlation functions take a different form. The presence of these corrections are known
as non-Gaussianities. The most straightforward one is that of a non-vanishing three-point
function, and its Fourier transform, the bispectrum B(kj, k2, k3). The bispectrum is defined
as

(f(k1)f(ka)f(ks)) = (2m)*B(k1, ka, k3)d* (ki + ko + k3) , (2.15)



and provides a first measure of non-Gaussianities in the density perturbation field. Evi-
dently, a non-Gaussian field may also have deviating higher order correlations. An immediate
example is the four-point correlation function and its Fourier transform, the trispectrum
T (ki ko, ks, kq),

(f(k1)f(ka) f(ks)f(ka)) = (27)*T (K1, k. k3, k)6 (k1 + ko + ks + k). (2.16)

To account for the Gaussian contribution to the four-point function, it is common to subtract
the Gaussian four-point function from the trispectrum, yielding the reduced trispectrum.
In other words, a deviation of T'(ky, k2, k3, k4) from the value predicted by Wick’s theorem
indicates the presence of non-Gaussianities.

2.3 Critical Points

The topological structure of a field f is intimately connected to the character and distribution
of the singular or stationary points in the field, as is illustrated by the Morse-Smale complex
(see section 4.1). We identify the critical or stationary points in a differentiable field f with
the points for which the gradient of f vanishes, i.e.,

Vi =0. (2.17)

Near a critical point xg, the function f(x) can be approximate with the Taylor expansion
1
f(x) =F(x0) + (x —x0) "V f(x0) + §(X —x0) H(x0)(x —x0) + O ([x —x0[]*)  (2.18)

= (x0) 0 = x0)TH(x0) (x — x0) + O (Ipx = %ol

with the Hessian matrix field H, whose components #;; are the second order partial derivatives
of the function f, i.e.,
0’ f

i = .
J 83:@690]

(2.19)

The function f is said to be a Morse function if all its critical points are non-degenerate, i.e.,
the Hessian matrix H is non-singular in the critical points of f. According to Morse lemma,
a Morse function f is, in the neighbourhood of a critical point, approximately a quadratic
form

f(x) = f(xo0) + % Myt + Myt + .+ 2ayq) O (lyl?) (2.20)

with the coordinates y = x — x¢9 = (y1,%2,...,yq) defined by the (normalized) eigenvectors
of the Hessian matrix H and its non-zero eigenvalues (A1, A2, ..., \q) [see 53, 54].

The character of a singular point is determined by the signature of the eigenvalues
(A1, A2,...,Ag), t.e., the number of positive and negative eigenvalues. The index i of a
singularity is defined as the number of negative eigenvalues. When all eigenvalues are negative,
the singularity is a (local) mazimum (index i = d). When all eigenvalues are positive, it is
a (local) minimum (index ¢ = 0). The critical points for which the Hessian has a number of
positive and negative eigenvalues are saddle points (index 0 < i < d). In two dimensions,
critical points with index 0, 1 and 2 are minima, saddle points and maxima.

One of the implications of the Morse lemma is that non-degenerate singular points are
isolated, i.e., two critical points of a Morse function are separated by a finite distance.



2.3.1 Critical Point Densities

The density of critical points of a random field, at function value v = f/o, can be evaluated
with Rice’s formula [13-16, 87|. For a two-dimensional random field, the density of minima
Ny, saddle points N7 and maxima N5 are given by the three-dimensional integral

v) = /// P(f =vo, fi = f2 =0, fu1, f12, f13) ﬁ; gz dfi1d fi2d faz (2.21)
with the notation
_or .
fi*aixia fz] *M, (2.22)

for i,j = 1,2. The integral for Ny, N7, and N is performed over the configurations (f11, f12, f22)
corresponding to minima, saddle points and maxima. Explicitly, the integral is performed
over configurations (fi1, fi2, fo2) for which the eigenvalues A1, A2 of the Hessian H, i.e.,

[f11+f22+\/4f12 (f11 — f22)? } , (2.23)

l\:)\t—l [\D\H

[fn + fo2 — \/4f12 + (f11 — f22) } , (2.24)

are either both positive Ay > Ao > 0 for minima, of mixed signature A1 > 0 > Ao for saddle
points, or both negative 0 > A1 > Ao for the maxima. For statistically isotropic random fields,
the three-dimensional integral can be reduced to a two-dimensional integral, by expressing
the three second order derivatives fi1, fi2, foo in terms of two rotationally invariant variables.
In terms of the two variables

Ji =X+ X2 = f11 + fo2, (2.25)
Jo = (A1 = Xo)? = (fi1 — f22)? + 411 s (2.26)

as proposed by Pogosyan et al. [32], the number density N;(v) of critical points in a Gaussian
field of index i takes the form

|J1 L (v +7J1)%0?
——J{ —Jy— ————5%—| dJ1dJs. 2.2
/ / gr2 /T2 D 2R gy | ) (2.27)

In the expression above, we use the transformation of the measure
dfndflzdfm = W’)\l — )\Q‘d)\ld)\z . (2.28)

The integration domains for the minima, saddle points and maxima in the integral expression
are given in table 1. The power spectrum, that characterizes the nature of the Gaussian
random field, influences the number densities via the spectral parameter v [also see 15|,

v = (2.29)

~10 -



critical point index ¢ J1 Jo

minima 0 (0,00) (0, J3)
saddle points 1 (—00,00) | (JE, 00)
maxima 2 (—00,0) | (0,J3)

Table 1: Field Hessian invariant variables J; and Jo: parameter domains for the number
density of minima, saddle points, and maxima AN in terms of the invariants J; and Jo (for
definitions see equations (2.25), (2.26) and (2.27)).

which is a combination of the spectral moments

o - dk
afz/o P(k)kz”lg. (2.30)

The critical point densities of Gaussian random fields, and the subsequent analysis, is fully
determined by the spectral parameter ~.

In figure 1, we show the critical point densities Ny(v), N1(v) and Na(v) for a two-dimensional
Gaussian random field. Observe that for nearly the entire density range v the saddle points
are approximately twice as abundant as the maxima and minima. The saddle point number
density is symmetric and centers around the mean v = 0. The number density of maxima
tends to be skewed towards positive field values, while the minima density is skewed towards
negative field values. In Pranav et al. [22], we analyze the number density of critical points
in three-dimensional Gaussian random fields. In that situation, there is hardly any overlap
between the number density curves for minima and maxima. While in a two-dimensional
random field both minima and maxima can be found for a large range of field values, in
three-dimensional Gaussian fields they hardly co-exist. This is related to the separation of
homologies as demonstrated in [22]. Also note from figure 1 that for Gaussian random fields,
the number densities of maxima and minima are symmetric around v = 0, i.e., Ny(v) =
Na(—v). For non-Gaussian random fields, this symmetry is broken.

3 Homology and Persistence:
Topological Structure of Random fields

The conventional analysis and characterization of random fields in terms of correlation func-
tions inform us about their spatial coherence and clustering. In the case of Gaussian random
fields we know that this is limited to the two-point correlation function, which fully encapsu-
lates the statistical nature of the field.

However, when the primary interest is that of the features and patterns that define the
spatial structure field, it is of greater benefit to study the topological characteristics of the

— 11 —



20 ]
15} :
z |
10} -
5} ]
00— = o —— —_
_4 _2 0 2 4
"4

Figure 1: Critical point number densities N; as a function of the field value (obtained using
equation (2.27)). The number density of maxima (red), saddle points (blue) and minima
(black) in a Gaussian random field (with LCDM power spectrum), at function value v = f/o.

field. Topology addresses the identity of topological features and their spatial connectivity.
These include islands, tunnels and cavities or voids. Islands are the regions that have a
field value in excess of a specific threshold, and one may study their connection, assess the
number of cavities they encompass, how many tunnels percolate their interior, and a range
of additional questions of interest.

This section presents the key concepts for a topological analysis and description of random
fields that we concentrate on in the present study. These are homology, and specifically,
the aspects of Betti numbers and persistence. For the inference of analytical expressions for
homology measures, which is one of the key targets of the present study, we follow a path
along a sequence of key topological concepts. Starting with the definition of a manifold, we
are led to the concept of filtrations, in particular that of superlevel set filtrations. The central
step in our analysis is the intimate relationship between the topology of a manifold and its
singularity structure. The latter refers to the spatial distribution and connections between
maxima, minima and saddle points. It is one of the central tenets of Morse theory, and
leads us to the concept of Morse-Smale complex for codifying the connectivity between the
manifold’s singularities and its topological structure.

The final, decisive and unique, element of our formalism concerns the graphical trans-
lation of the Morse-Smale complex, producing a graphical representation of a random field
realization that directly reflects its singularity and topological structure. Mathematically, it
is known as a graph [88]. The graph representation facilitates our ability to infer integral rela-
tions for the Betti numbers, and even for the persistence diagram. While in principle we may
follow this strategy in a three-dimensional context, in the present study we restrict ourselves
to the situation of a two-dimensional random field and show that it yields an approximate
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but accurate analytical expression for the two Betti numbers Sy and ;.

3.1 Random Field Realizations and Manifolds

The ultimate objective of our study, the Gaussian temperature fluctuation field of the CMB,
concerns a realization of a random field on a 2-sphere S?. However, because of the local
nature of our analysis, we may restrict our analysis to random fields on the Euclidian plane
R2. Hence, we consider a function f : R? — R that is a realization of a two-dimensional
real random field over R?. In principle, our analysis can be generalized to arbitrary higher
dimensional random fields.

The realization f(r) of the random field may be considered in terms of a manifold M. Roughly
speaking, a manifold is a subset of RY which, for some n < N, locally looks like R™. For the
field realization f(r), the corresponding manifold M is defined as

M = {(r, f(r))|r € R?} C R3. (3.1)

3.2 Filtrations and Superlevel Sets

On the manifold M defined by the random field f(r), we may construct a superlevel set. To
this end, we apply a threshold v to the function values. The corresponding superlevel set
filtration M (v) of the manifold M is

M(v) = {(r, f(r)) € M|f(r)/o > v}. (3-2)

A key property of superlevel set filtrations is that

M(Vl) Q M(VQ) (33)

for all vy, vo with 11 > 5. This can also be visually appreciated from the example of superlevel
filtrations of a Gaussian random field realization at a sequence of three different threshold
levels v shown in figure 2. In our analysis, v always runs from oo to —oo, incorporating more
and more points of M in M(v) as we descend along v. By definition therefore, M(co) = ()
and M (—o0) = M.

3.3 Homology of Random Fields: Betti numbers

Homology is the topological formalism for specifying in a quantitative and unambiguous
way the connectivity of manifolds through the connectivity of their boundaries [42, 44, 89|.
A branch of algebraic topology, it uses the mathematical formalism of homology groups to
represent holes in a space in terms of the connectivity with surrounding structures. We refer to
appendix A for a formal treatment and presentation of the basic concepts of homology [also
see 42, 90, 91, for complete mathematical treatments|. An extensive outline of homology,
within the context of their application to the large-scale cosmological mass distribution, can
also be found in [50] and [52]. Our recent numerical study of the Betti numbers, Euler
characteristic and Minkowski functionals of three-dimensional Gaussian fields [22] can be
seen as a companion paper to the present analytical and theoretical study.

~13 -



Figure 2: Superlevel set filtrations. Superlevel set filtrations M (v) of a realization of a
Gaussian random field for three different field thresholds v = f/o: the regions with field
value above the threshold f/o > v belong to the superlevel set at v (see equation (3.2)).

Formally, Betti numbers are a concept from algebraic topology enabling a (partial) charac-
terization of topological spaces. The Betti numbers characterize topology in terms of the
homology of a manifold M, concentrating on the equivalence classes of homological chains
and cycles on the manifold M (or its simplicial decomposition). This is intimately related
to a study of the boundary M of the manifold in the setting of superlevel set filtrations of
functions on RP studied in this paper. The homology of a D-dimensional manifold is char-
acterized by D + 1 Betti numbers f;,i = 0,...,D. In a sense, the i*! Betti number may be
considered as the number of i-dimensional independent holes in a manifold M. For example,
in three-dimensional space the zeroth Betti number £y counts the number of separate com-
ponents in M, while the first Betti number 7 counts the number of tunnels and the second
Betti number 35 the number of cavities, in the context of superlevel sets on R3.

A formal and rigorous definition of the Betti numbers is given in appendix A. It follows
simplicial homology theory, and concentrates on a characterization of a manifold in terms
of the number of independent p-dimensional homological boundaries that it contains, each
enclosing p-dimensional holes. Formally, within the context of algebraic topology, the bound-
ary structure of the manifold is assessed in terms of p-cycles (see app. A). The collection of
independent p-dimensional homological cycles, up to topological equivalence, is the p-th ho-
mology group H,(M)5. The rank of the homology group H,(M) is the number of all linearly
independent topological cycles, and is denoted by the Betti number (3, [43]. A D-dimensional
manifold M has one homology group Hy,(M) for each of D + 1 ranks 0 < p < D, and the set
of homology groups characterizes the boundary structure and homology of the superlevel set.

We may also observe that as the number of i-dimensional holes is an integer this implies
Betti numbers §; intrinsically to be an integer, i.e., 3; : [—00, 00] — Z. For random fields over
R?, a realization can have infinitely many i-dimensional holes. It is more sensible therefore to
define normalized Betti numbers BZ-, the number of i-dimensional holes per unit volume/area.
Hence, f3; is a real number, i.e., §; : [—00,00] — R. For practical applications, such as the
numerical evaluation of Betti numbers in experimental or simulation datasets, de facto we
nearly always deal with normalized Betti numbers. For reasons of convenience, we therefore
always retain the notation 3;, even when it concerns a normalized Betti number @

It is straightforward to extend the concept of the Betti numbers for a manifold to that of
the superlevel set M (). The i Betti number 3;(v) of the superlevel set M (v) is the number
of i-dimensional holes in M (v) as a function of filtration level v. Dependent on the nature of

SCorrectly defined, the p-th homology group is the p-th cycle group modulo the p-th boundary group.
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the manifold, we may also identify symmetries with respect to its topological structure. The
statistical symmetry of Gaussian random fields between underdense and overdense regions
implies an equal number of overdense regions above level v versus the number of underdense
troughs below level —v. This means that in two-dimensional space the Betti numbers obey
the statistical symmetry relation

Bo(v) = Bi(—v). (3.4)

3.4 Betti, Euler, and Genus

The homology and connectivity of a manifold are globally quantified by the Betti numbers,
which represent a (partial) characterization of topological spaces®. In this sense, they extend
the principal topological characterization known in cosmology in terms of genus or Fuler
characteristics. Numerous cosmological studies have assessed and discussed the genus of the
isodensity surfaces defined by the Megaparsec galaxy distribution [26, 92, 93|.

The genus G specifies the number of handles defining an orientable surface, i.e., the
maximum number of incisions one can make without partitioning the manifold into separate
components. The genus has a direct and simple relation to the Euler characteristic x of an
isodensity surface.

Originally stemming from the description of polyhedral surfaces and three-dimensional
simplicial complexes, the Euler characteristic is a topological invariant that plays a key role
in homology. For a polyhedral surface with V' vertices, E edges and F' faces, the Euler
characteristic is

x=V—-FE+F. (3.5)

This definition of the Euler characteristic extends to manifold, as any manifold has a polyhe-
dral decomposition. Note that this definition is well-defined, as the Euler characteristic does
not dependent on the chosen decomposition. While in principle one may define the Euler
characteristic in any dimension D, its significance may be best appreciated in the context of
surfaces in 3-dimensional space. To this end, we consider a 2-manifold in three-dimensional
space, the surface S = OM of a 3-manifold M. It follows from equation (3.5) that, when the
surface S consisting of ¢ discrete components, the genus of the surface is given by

G=c— %X(S), (3.6)

where the Euler characteristic x(S) is, by the Gauss-Bonnet theorem, expressed as the inte-
grated intrinsic curvature of the surface

(S) = % f{ ( R11R2> is. (3.7)

Here R; and Ry are the principal radii of curvature at each point of the surface, and the
integrand 1/R; Ry is known as the Gaussian curvature. The integral of the curvature is
invariant under continuous deformation of the surface S. This is perhaps one of the most

SStrictly speaking this is only true when ignoring the torsion-free part of a homology group
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Figure 3: The Euler characteristic x(v) for the superlevel set filtration of a Gaussian random
field on a R? at field threshold v = f/o. The well-known analytical expression for £(v) is
given in equation (3.10).

surprising results in mathematics, establishing an an intricate and profound relation between
differential geometry and topology.

The profound central significance of the Euler characteristic is not only reflected in its intrinsic
and deep relationship with the topology of simplicial complexes and the geometric properties
of manifolds, and hence with simplicial topol