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Wave effects in lensing form a rich field on the intersection of classical caustic singularities
and quantum interference, yet are notoriously difficult to model. I present a new method
to define and efficiently evaluate multi-plane lensing of coherent electromagnetic waves by
plasmas and gravitational lenses in polynomial time. The large number of recently observed
pulsars and fast radio bursts in radio astronomy suggest that wave effects will likely be
observed in the near future. The interference fringes are sensitive to physical parameters
which cannot be inferred from geometric optics. In particular, for multi-plane lensing, the
pattern depends on the redshifts of the lens planes. The study of these effects will allow the
use of radio sources to probe our universe in novel ways.

Lensing is of key importance in astronomy
and cosmology, as it allows us to infer properties
of lenses which cannot be seen in other ways. For
example, gravitational microlensing allows us to
detect faint but massive foreground objects, in-
cluding exoplanets, and to put tight constraints
on their contribution to the dark matter [1–6].
Plasma lenses have been observed to amplify as-
tronomical signals, such as the “Black Widow”
pulsar [7]. The turbulent interstellar medium
leads to scintillation effects [8–10]. Radiation
often propagates through multiple lenses before
reaching us. When the lenses are widely sep-
arated in the radial direction, this leads to an
important effect that we shall quantify here.

In astronomy, lensing is usually considered
in the limit of geometric optics, in which light
travels along null geodesics and the image is de-
termined by the geometry of the light rays [11–
13]. This is an excellent approximation when the
wavelength of the radiation is short compared
to the characteristic lensing scale, if the source
is extended, and if the radiation is incoherent.
Nevertheless, there are cases in which the geo-
metric optics approximation fails. For pulsars
and fast radio bursts (FRBs), the wave nature
of the radiation can become important, as these
sources are very small and their radio emissions
are coherent. While we have yet to observe in-
terference fringes in gravitational lensing, scintil-
lation by plasma lenses is detected on a regular
basis.
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The observation of wave effects in lensing
opens a new window for astronomy, as the
diffraction pattern of a lens is significantly richer
than the corresponding intensity pattern in ge-
ometric optics. Unlike the latter, the diffraction
pattern depends on the frequency in a way that
can be used to constrain the system’s physical
parameters. For example, the diffraction pat-
terns in the lensing of gamma ray bursts (GRBs)
have been proposed as a probe to constrain pos-
sible dark matter candidates [14, 15]. It was re-
cently demonstrated that wave effects generally
increase the cross section for lensing events and
allow us to put tight constraints on the mass
of a gravitational point lens [16]. Likewise, the
diffraction pattern of a binary gravitational lens
strongly depends on the individual masses of the
gravitating bodies [17]. The detection of fringes
in the lensing of FRBs can tightly constrain the
abundance of dark matter in the form of massive
astrophysical compact halo objects (MACHOs)
[18]. In this letter, I show that, unlike the geo-
metric optics intensity, the fringes in multi-plane
lensing allow one, in principle, to determine the
redshifts of the lens planes.

In the coming years, telescopes such as the
Canadian Hydrogen Intensity Mapping Exper-
iment (CHIME) [19], the Hydrogen Intensity
and Real-time Analysis eXperiment (HIRAX)
[20], and the Square Kilometer Array (SKA)
[21], as well as next-generation follow-ups in-
cluding the Canadian Hydrogen Observatory
and Radio-transient Detector (CHORD) [22]
and the Packed Ultra-wideband Mapping Array
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(PUMA) [23] will detect large numbers of co-
herent radio sources on the sky [24]. Improv-
ing our understanding of wave effects in gravita-
tional and plasma lensing will allow us to take
advantage of these observations.

Wave effects in optics have traditionally been
studied with the semi-classical or Eikonal ap-
proximation. This approximation is an improve-
ment over the geometric approximation, as it
captures the interference between different im-
ages. However, the approximation fails near
caustics where the intensity diverges. In con-
trast, the full wave-optics picture is determined
by a path integral over all possible paths between
the source and observer [25]. In the thin-lens ap-
proximation, this path integral reduces to the
astronomical Kirchhoff-Fresnel integral. This
highly oscillatory integral is unfortunately del-
icate to define and difficult to evaluate. In a re-
cent paper, we used Cauchy’s theorem in multi-
dimensional complex analysis (Picard-Lefschetz
theory [26]) to provide a rigorous definition of
and to efficiently evaluate the single-plane lens
integral [27]. For more details on this method
and a numerical implementation, see [28]. In
this letter, I extend the definition and the eval-
uation method to multi-plane lenses, which are
more realistic. I express the high-dimensional
lens integral as an iterated integral defined us-
ing analytic methods. Moreover, I propose an
efficient scheme combining Picard-Lefschetz the-
ory and the Eikonal method which terminates in
polynomial time. This is the first time that we
are able to study multi-plane lensing in the full
wave-optics regime.

In this letter, I first summarize multi-plane
lensing in geometric optics, before presenting the
corresponding wave optics analysis. I express the
wave optics integrals in terms of an analytic and
a multi-image part and use complex analysis and
Fast Fourier Transforms to evaluate these parts.
Finally, I demonstrate the merit of this new inte-
gration scheme with a double-plane plasma lens
model and two gravitational lens models.

Geometric optics: Consider radiation trav-
eling through n discrete lens-planes Li, i =
1, . . . , n, at redshifts zi separating the observer
from the source (such that 0 ≤ z1 ≤ · · · ≤ zn).
Let di j be the angular diameter distance be-

source
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L1 L2 Ln Sx1 x2 xn y

Figure 1: Geometry of interfering paths in a
multi-plane lens system (reference point RP).

tween the lens-spheres Li and Lj , and xi the an-
gular coordinate of the intersection of a light ray
with the lens-plane Li, with respect to the coor-
dinate system centered on the observer (see Fig.
1). Let y = xn+1 be the position at which the
light ray intersects the source-plane S = Ln+1.
In [11], the ray optics is completely determined
by the time-delay function (relative to the un-
perturbed trajectory)

T (x1, . . . ,xn+1) =
n∑
i=1

Ti(xi,xi+1), (1)

with the time-delay Ti(xi,xi+1) between planes
Li and Li+1 given by

(1+zi)
d0 id0 i+1

c di i+1

[(xi − xi+1)
2

2
+βi i+1ϕi(xi)

]
. (2)

The first term is the Pythagorean contribu-
tion, corresponding to the variations in the path
length. The second is the time-delay due to a
gravitational- or plasma-induced phase ϕi, re-
ceived while passing through the i-th lens-plane,
weighted by the geometric coefficient

βi j =
di jd0n+1

d0 jdi n+1
. (3)

Given a surface mass density Σi, the gravita-
tional phase variation ϕi(xi) is given by

−4G

c2
d0 idi n+1

d0n+1

∫
Σi(x) log ‖xi − x‖dx, (4)

with Newton’s constant G. For a plasma with an
electron density Σi,e on Li, the phase variation
is

ϕi(xi) = −d0 idi n+1

d0n+1

Σi,e(xi)e
2

me ε0 ω2
, (5)



3

with the electron mass me and charge e, the vac-
uum permittivity ε0 and the frequency of the
radiation ω. (We assume the speed of light in
vacuum c = 1.)

Fermat’s principle states that we observe im-
ages along rays for which the arrival time is an
extremum. Applying this to the time-delay func-
tion (1), we obtain the conditions

xi+1 − xi =− (1 + zi−1)
d0 i−1di i+1

d0 i+1di−1 i
(xi−1 − xi)

+ βi i+1αi (xi) , i = 1, . . . , n (6)

with x0 = 0, and the deflection angle αi ≡ ∇ϕi.
This iterative equation is solved by

xj = x1 +

j−1∑
i=1

βi jαi(xi), j = 2, . . . , n+ 1. (7)

It induces a Lagrangian map ξ : L1 → S that
expresses the intersection of the ray with the
source-plane in terms of the angle on the sky,

ξ(x1) = x1 +

n∑
i=1

βi jαi(xi). (8)

Note that geometric optics is completely deter-
mined by the geometric coefficients βi j and the
deflection angles αi. It does not depend on the
redshifts zi of the lens-planes.

In geometric optics, the deformation ten-
sor D = ∇x1ξ determines the lensing pattern.
Whereas the deformation tensor of a single-plane
lens (n = 1) is symmetric, including a shear and
a magnification term, the deformation tensor of
the multi-plane lens is generically not symmet-
ric. The intensity of the image is given by

Igeom(µ) =
∑

x1∈ξ−1(µ)

1

|det∇x1ξ(x1)|
(9)

which spikes on the caustic network C = ξ(M)
with the critical curve

M = {x1 ∈ L1 | det∇x1ξ(x1) = 0} . (10)

A wave analysis is required to understand the
intensity near these caustics, as the geometric
optics and the Eikonal approximations fail in
these regions. For a detailed discussion of caus-
tics and their classification by Lagrangian catas-
trophe theory, see [29–31].

Wave optics: In wave optics, the lens pattern
is again determined by the time-delay function,
but this time through the Kirchhoff-Fresnel path
integral

Ψ[y] = N
∫
(Rd)n

eiωT (x1,...,xn,y)dx1 . . . dxn,

(11)

taken over paths which are piecewise linear be-
tween the lens planes. The frequency is ω and
the dimension of the lens-planes is d. The inte-
gral is normalized by

N =

(
ω

2πi

n∏
i=1

(1 + zi)
d0 id0 i+1

di i+1

)nd/2
, (12)

so that the intensity I(y) = |Ψ(y)|2 is unity in
the absence of a lens, i.e., I(y) = 1 when ϕi = 0
for all i.

The highly oscillatory nd-dimensional inte-
gral Ψ is unfortunately difficult to define and
expensive to evaluate. For this reason, we ex-
press it as an iterated integral

Ψi+1(xi+1) = Ni
∫
Rd

Ψi(xi)e
iωTi(xi,xi+1)dxi (13)

for i = 1, . . . , n, with the initial wave func-
tion Ψ1(x1) = 1, the final amplitude Ψ(y) =
Ψn+1(y), and the normalization factors

Ni =

(
ω

2πi
(1 + zi)

d0 id0 i+1

di i+1

)d/2
. (14)

Now using Cauchy’s integral theorem, we de-
form the integration domain into the complex
plane. For the first integral, Ψ2(x2), we deform
the integration domain Rd to the Lefschetz thim-
ble J1 ⊂ Cd along which the integrand becomes
monotonically decreasing,

Ψ2(x2) = N1

∫
J1
eiωT1(x1,x2)dx1, (15)

and is absolutely convergent, removing any am-
biguities (for a detailed discussion of Picard-
Lefschetz theory, see [26]). For local lenses, away
from the caustics, the dominant relevant saddle
point is given by the unperturbed ray x1 = x2,
hence

Ψ2(x2) ≈ eiωT1(x2,x2) (16)
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(a) I(x2) = |Ψ2(x2)|2 (b) I(x3) = |
∫
Rd e

iω(T1+T2)dx2|2 (c) I(x3) = |Ψ3(x3)|2

Figure 2: Example of a plasma lens with the frequency ω = 50. The white dotted line is the
caustic curve. Left: intensity pattern on the first lens-plane L1. Center: single-plane

approximation on the second lens-plane L2. Right: double lens system.

= e
iω(1+z1)

d0 1d0 2
d1 2

β1 2ϕ1(x2) . (17)

This is a good approximation for the single im-
age regions. Expressing the amplitude as the
sum of this leading term and a term containing
the details of the caustics and the interference in
the multi-image regions, we write

Ψ2(x2) = eiωT1(x2,x2) + δΨ2(x2), (18)

so that δΨ2(x2) vanishes outside the interesting
regions. We express the integral over x2 as the
sum of a single-plane integral plus a correction
which decays exponentially in the single-image
regions. We then write

Ψ3(x3) =N2

[ ∫
Rd

eiω(T1(x2,x2)+T2(x2,x3))dx2

+

∫
Rd

δΨ2(x2)e
iωT2(x2,x3)dx2

]
. (19)

We evaluate the first integral with Picard-
Lefschetz theory, deforming the integration do-
main to the Lefschetz thimble J2 ⊂ Cd. The
second integral can be efficiently evaluated with
conventional integration methods, because the
perturbation δΨ2 renders it absolutely conver-
gent. It is convenient to use Fast Fourier Trans-
forms to evaluate the convolution with the Gaus-
sian kernel eix

2
. We iterate this procedure till we

reach the desired amplitude Ψ(y) = Ψn+1(y).
Note that this iterated integral exhibits two

interesting limits. Firstly, for small separations
between the lens planes di i+1, the geometric
term dominates over the phase variation ϕi. In

the limit where di i+1 approaches 0, the geomet-
ric term approaches a Dirac delta function in the
integral, collapsing the lens planes Li and Li+1

to a new plane with a phase variation ϕi +ϕi+1.
Secondly, when the phase variations ϕi and ϕi+1

of two lens planes Li and Li+1 have disjoint sup-
port, the lens integral factorizes into the product
of two Fresnel-Kirchhoff integrals.

Unlike the geometric approximation, the
diffraction pattern of the multi-plane lens sys-
tem in wave optics is sensitive to the redshifts
of the lens planes zi. The fringes in wave optics
thus, in principle, provide yet another way to use
lensing to probe our universe. I will study the
effects of the redshifts on the fringes in a future
paper.

Plasma lensing: For a further demonstration
of this method, consider a two-dimensional dou-
ble lens system (d = n = 2) with d0 1 = d1 2 =
d2 3 = 1/3, at low redshift z1 = z2 = 0 with the
phase variation

ϕi(x, y) =
1

1 + 2x2 + y2
, (20)

for i = 1, 2. See Fig. 2 for the corresponding
interference patterns. Observe that the config-
uration of the lens-planes and their correspond-
ing redshifts directly influence the nature of the
interference pattern. The diffraction pattern of
the single-lens approximation significantly devi-
ates from the true diffraction pattern near the
caustics. Moreover, the interference pattern is
sensitive to the Doppler shift between the source,
the lens planes, and the observer.
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(a) Binary lens with a
small radial separation.

(b) Binary lens in a
single lens plane.

Figure 3: Binary system separated by an
Einstein angle with the mass weightings

g1 = 1
3 , g2 = 2

3 and the frequency ω = 50. The
white dotted line is the caustic curve. Left: the
masses have a small radial separation. Right:
the masses are in a single plane (presented in

[17]).

Gravitational lensing: The proposed iter-
ative procedure works efficiently for smooth
lenses. Gravitational lenses for which the phase-
variation is singular are more subtle. Consider
a setup with n point masses with mass Mi lo-
cated at ri ∈ Li for i = 1, . . . , n with the phase
variation

ϕi(xi − ri) = −gi log ‖xi − ri‖, (21)

with the weighting gi = 4GMi
d0 idi n+1

d0n+1
. The first

integral Ψ2 can be evaluated exactly in terms of
hypergeometric functions [25]. Writing

Ψ2(x2) = e−iωg1 log ‖x2−r1‖ + δΨ2(x2), (22)

we express the second integral Ψ3 as a binary
single-plane lens, evaluated in elliptic coordi-
nates [17], plus an absolutely convergent cor-
rection. See Fig. 3 for an illustration of a bi-
nary gravitational lens separated ‖r1 − r2‖ = 1,
the Einstein angle, with a small radial deviation
d0 1 = 0.475, d1 2 = 0.05, d2 3 = 0.475. Note
that both the caustic network and the diffrac-
tion pattern significantly depend on this radial
displacement. (For an exploration of the caus-
tics of gravitational binary lens systems in the
geometric optics limit, see [32]).

Let’s now add a third lens to the problem. If
we write the amplitude

Ψ3(x3) = eiω(T1(x3,x3)+T2(x3,x3)) + δΨ3(x3),
(23)

we cannot use Picard-Lefschetz theory for the
third integral Ψ4 due to the three singularities
at r1, r2, r3 in the exponent. For the two sin-
gularities in the binary lens system, we used
elliptic coordinates [17]. However, there does
not exist a simple extension incorporating three
foci. For this reason, we use the effective phase

−
(∑2

i=1 gi

)
log ‖x− rm‖ which approaches the

sum
∑2

i=1 Ti away from the masses, with the

weighted mean rm =
∑2

i=1 giri∑2
i=1 gi

, to express the

amplitude as

Ψ3(x3) = e−iω
∑2

i=1 gi log ‖x3−rm‖ + δΨ3(x3).
(24)

The third integral Ψ4 is now a single-plane bi-
nary lens plus an absolutely convergent correc-
tion. This is merely a convenient representa-
tion of the calculation to add a new point mass
lens. The result is still exact. We can add
a fourth lens to the problem by iterating this
procedure. See Fig. 4 for a demonstration of
the single-plane triple gravitational lens with
d0 1 = 1/2, d1 2 = d2 3 = 0, d3 4 = 1/2, g1 =
g2 = g3 = 1/3 forming an equilateral triangle
r1 = (12 ,−

1
2
√
3
), r2 = (−1

2 ,−
1

2
√
3
), r3 = (0, 1√

3
),

with sides equal to unity in terms of the Einstein
angle, centered on 1

3 (r1 + r2 + r3) = 0. I used
elliptic coordinates for the first two lenses and
added the third lens on a separate plane in the
limit d2 3 → 0. Note that this diffraction pattern
consists of a single four-image region, six six-
image regions, and a single eight-image region
enclosing a ten-image region.

Conclusion: In this letter, I define and eval-
uate the diffraction patterns of multi-plane lens-
ing in wave optics using a combination of Picard-
Lefschetz theory and Fast Fourier Transforms. I
express the integral as an iterated integral and
write the intermediate integrals as the sum of a
simple (unnormalized) Eikonal term and a multi-
image term with compact support containing
the interesting caustic and interference effects.
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(a) ν = 50 (b) ν = 100 (c) ν = 200

Figure 4: Triple point mass lens interference pattern for the frequencies ω = 50, 100, and 200.
The white dotted line is the caustic curve.

This procedure is robust and converges in poly-
nomial time. The quantum interference is sig-
nificantly richer than geometric optics near the
caustics where the geometric optics approxima-
tion breaks down. The diffraction pattern con-
tains more features and is, unlike the geomet-
ric analysis, directly sensitive to the redshifts of
the lens-planes. In future work, I will perform a
detailed investigation of the dependence of the
fringes on the redshifts of the lens-planes. This
method furthers the study on the interplay of

classical catastrophe theory and interference of
coherent radio sources.
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