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Introduction

The Ryu-Takayanagi (RT) formula relates holographically the Entangle-
ment Entropy (EE) of an entangling subregion in a Conformal Field The-
ory (CFT) with the area of a codimension-2 hypersurface immersed in
Einstein-anti-de Sitter (AdS) spacetime. EE is obtained at the limit of
Rényi entropy when the replica parameter m tends to 1. In the grav-
ity side [1], this corresponds to a squashed-cone (d + 1)-dimensional
replica orbifold Méi)l whose angular deficit is 27(1 —a) and o = 1/m.
Based on these considerations, the EE is defined as
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where I¢ [Mfﬁl} is the Euclidean action evaluated on the orbifold

M,
Renormalizing EE using Kounterterms

In the Kounterterms method [2], for even-dimensional manifolds M,
with 2n = d + 1, the renormalized Einstein-AdS action is given by
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where x [M,,] is the Euler characteristic of M,,, and the polynomial
of the AdS curvature F//2 = RyIIZ + + L&k reads
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When I{*" is evaluated in the orbifold, the geometrical quantities de-

compose into a regular part Mgi) \ X and another localized in the con-
ical singularity . The singular part reads
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This is the Nambu-Goto action of a cosmic brane with tension /" = 4GN
and renormalized volume Vol™"(X). Using (1), we find the renormal-

ized version of RT formula S™" = VOLG,(NE"T).

We identify two kinds of contributions to EE in,
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e A curvature (local) term, depending on local integrals over >gs.
o A topological (global) term, given x [Xgr].

When the entangling region is a perfect disk, the local term vanishes
and the remaining contribution corresponds to the free energy of the
CFT on S

Renormalized EE of a deformed disk

Consider a circular entangling region S* in CFT5. Contributions to EE [3]
coming from the deformation of the entangling surface Sé are univer-
sal and they adopt the expansion

S(SH = SO(SH + €2SP(Sh + O(€).
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The leading correction is controlled by the two-point function charge
Sten(SL) = T, 602 — 1) (af + 17).
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In order to show this result, we start from the gravity side with the
Poincaré-AdS metric
L2

ds® = = (= dt* + dz° + dp” + p*de”)

and we parametrize the deformed minimal codimension-2 surface
with the embedding function
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Then, using expression (2) in the case d = 3, given by
5% = L )+ f Py F
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we match the result of [3]. The deformation contribution is encoded
in the local term.

Willmore energy

Willmore energy measures the deviation of a surface X from the round

sphere. It is defined by W (X) = [ H*ds, where H is the mean cur-

X
vature. It acquires a minimum value when evaluated on a spherical

submanifold W (X)) > 4.
In [4], it was shown finite term of EE is the Willmore energy of the dou-
ble copied RT surface in R”. Using formula (2), we relate the Willmore
energy to renormalized EE,
L2
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In order to obtain this expression, we started from the renormalized
volume of codimension-2 surface > and imposed the minimality con-
dition. This gives an upper bound on deformations in the entangling
surface
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Conclusion

e Formula (2) identifies local and global contributions to EE for odd d.

e The free energy is found to have a origin coming from the topology
of the RT surface

e The upper bound from Willmore energy gives a geometrical view of
strong subbaditivity.

e When saturated, the local term gives no contribution and corre-
sponds to the free energy.
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