SD without GR

Henrique Gomes

Perimeter Institute for Theoretical Physics

June 24, 2015

Shape dynamics and the intersection surface

What is the most general gravitational intersection theory?

Fine-print:

- Has to be first class wrt diffeomorphisms.
- Contain two propagating degrees of freedom.
- Up to second order in momenta.
- Optional: regular single connected component.

Answer:

$${}_{a}R + \frac{\sigma^{ab}\sigma_{ab}}{\sqrt{g}} + (\frac{3}{8}\tau^{2} + c\tau + 2\Lambda) = 0$$

(could have e.g. τ_i for different components)

For comparison

$$aR + \frac{\sigma^{ab}\sigma_{ab}}{g} + \left(\frac{3}{8}\tau^2 + c\tau - 2\Lambda\right) = 0 \tag{1}$$

Almost intersection of ADM and $\pi - \tau \sqrt{g} = 0$ surface:

$$R + \frac{\sigma^{ab}\sigma_{ab}}{g} + \left(\frac{3}{8}\tau^2 - 2\Lambda\right) = 0 \tag{2}$$

Can find a canonical transformation such that $(1) \rightarrow (2)$. Only effect is that Λ absorbs c:

$$\Lambda \rightarrow \Lambda + 3c^2$$

Weakening the requirements

What if the Hamiltonian constraint closes only at the intersection surface?

No duality.

Weakening the requirements

What if the Hamiltonian constraint closes only at the intersection surface?

No duality. Do we have such an example? Yes:

•
$${}_aR\sqrt{g}+rac{\pi^{ab}\pi_{ab}+b\pi^2}{\sqrt{g}}+(f(V)\pi+2\Lambda\sqrt{g})=0$$

Closes only on $\pi/\sqrt{g} = cte$.

Canonical transformation with b=-1/2 goes to ADM Hamiltonian with:

$$\Lambda \rightarrow \Lambda + 3f^2(V)$$

Case with $b \neq -1/2$ not yet studied (Horava).

The (modified) LY equation

What about the "gauge-unfixed" version? Usual LY equation:

$$\phi^{-12}\pi^{ab}_{TT}\pi^{TT}_{ab} - \frac{2}{3}\tau^2 + 2\Lambda - \phi^{-4}R + 8\phi^{-5}\nabla^2\phi = 0$$

Both alternatives have almost same form as this, but criteria for solvability is given by:

$$(b-\frac{1}{6})\tau^2+2\Lambda<0$$

Then one obtains well-defined theory with SD symmetries. (non-local Hamiltonian, or smearing N_o)

No dual theory with refoliation invariance.

Are there signatures?

Neutrinos and Ashtekar connection:

Got a volume-dependent cosmological constant. But also relation between extrinsic curvature and momenta disrupted:

$$\pi_{ab} = K_{ab} - Kg_{ab} - \frac{1}{2}g_{ab}f(V)$$

Ashtekar connection in chiral spinor dynamics differs from self-dual connection by torsion:

$$A_a^i = \omega_a^i - \frac{i}{2}e_a^i f(V)$$

(this is all for b = 0)

Many open questions

- More signatures?
- What about for a variable DeWitt parameter?
- Variable speed of light?
- Canonical transformations?
- RG flow acting on cosmological constant and DeWitt parameter? (Horava)
 - or better: RG flow on space of "local gauge-fixings" of conformal symmetry, which leave 2 physical dofs?
 - More room than purely conformal diffeo invariants.