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Shape Dynamics

Shape Dynamics:

Shape Dynamics describes gravity as the
time-evolution of the shape of space.
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Shape Dynamics

Geometry vs. Shape:

Geometry:
The (Riemannian) geometry of space
can be completely described by a
Euclidean-signature metric tensor qij(x)
up to diffeomorphisms:

x i → x̃ i (x)

q̃kl(x̃) = qij(x)
∂x i

∂x̃k
∂x j

∂x̃ l

Shape:
The shape of space can be described by
a Euclidean-signature metric tensor
qij(x) up to diffeomorphisms and spatial
Weyl transformations:

qij(x)→ e4φ(x)qij(x)

Weyl transformations can be
thought of as a local rescaling of
the geometry.

Shape dynamics is invariant under
spatial diffeomorphisms and spatial
Weyl transformations:
It is a theory of the shape of space.
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Shape Dynamics

Gauge Symmetries and Constraints

General Relativity:

General relativity is invariant under
space-time diffeomorphisms.

In the Canonical formalism, this is
split into two parts.

Spatial diffeomorphism generated by the
momentum constraint:

Ha(x) = πa
b;a

Refoliations generated by the
Hamiltonian constraint:

H(x) =
Gabcdπ

abπcd

√
q

− R
√
q

Shape Dynamics:
Shape Dynamics is invariant under
spatial diffeomorphisms generated by
the same momentum constraint

Ha(x) = πa
b;a

as well as spatial Weyl tranformations
generated by a Weyl constraint:

D(x) = qijπ
ij

Where πij is canonically conjugate to
qij :

{qij(x), πkl(x ′)} = δ
(k
i δ

l)
j δ(x − x ′).
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Shape Dynamics

Second-Class Constraints

Unlike general relativity, shape dynamics also has a
system of second-class constraints.

e−4φ(∇̄2N + 2q̄ijφ,iN,j)− e−6φNḠijkl
π̄ij π̄kl

|q̄|
≈ 0

√
q̄
(
8∇̄2φ− R̄φ

)
+
π̄ij π̄

ij − π̄2

√
q̄

φ−7 ≈ 0.

Where N is a lapse function, qij = e4φq̄ij , π
ij = e−4φπ̄ij

and Ḡijkl = 1
2 (q̄ik q̄jl + q̄il q̄jk)− q̄ij q̄kl .

These constraints do not weakly commute with other
constraints and must be solved in order to find solutions.
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Shape Dynamics

Why Shape Dynamics?

Shape Dynamics agrees with general relativity
except when general relativity is badly behaved.

Constraint Algebra is a Lie Algebra =⇒

Symmetry group has a simpler structure.

Time plays a clearer, more physical role in the theory.

All of these features could eventually facilitate canonical
quantization of gravity.
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Shape Dynamics

Two Problems with General Relativity

GR Predicts its own Demise:

Black hole solutions of general relativity
collapse to physical singularities where
the theory breaks down.

GR predicts CTCs:

Many solutions of general relativity
contain closed time-like curves, allowing
observers to revisit events in their past.
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Shape Dynamics Black Holes

Shape Dynamic Black Holes

Shape Dynamic black holes are physically
different from general relativistic black holes:

Example: Spherically Symmetric Black Hole.

ds2 = −
(

1− m
2r

1 + m
2r

)2

dt2 +
(

1 +
m

2r

)4 (
dr2 + r2dΩ2)

)
(Gomes, 2013. arXiv:1305.0310 [gr-qc])

Invariant under a combination of
r → m2/4r and t → −t.
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Shape Dynamics Black Holes

Shape Dynamic Black Holes are Wormholes

This solution represents a wormhole.

=⇒ No singularity at r = 0!
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Shape Dynamics Black Holes

Comparing SD and GR Black Holes

This solution looks very much like a schwarzschild black hole in
isotropic coordinates.

The novel feature is that this is a complete solution for shape
dynamics, valid both outside, and within the horizon.

An infalling observer would take infinite proper time to reach r = 0.
This is physically different than the Schwarzschild spacetime!
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Shape Dynamics Black Holes

Inversion as a Parity

The spatial metric is invariant under the inversion
r → m2/4r .

This discrete transformation maps the interior into the
exterior and the horizon into itself.

This makes the wormhole character of the solution
obvious.

This transformation also shares many features of a parity
transformation.

The spherically symmetric shape dynamic black hole is
invariant under a combination of this “parity” and
time-reversal— what happens if we add in charge?
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Shape Dynamics Black Holes

Coupling Shape Dynamics to the Electromagnetic Field

The Hamiltonian for electromagnetism is given by:

HEM = 2
√
q̄
(
−A[i,j]A[k,l ]q̄

ak q̄jl + Ē i Ē j q̄ij
)

From which we obtain the coupled second-class constraints:

√
q̄
(
8∇̄2φ− R̄φ

)
+
π̄ij π̄

ij

√
q̄
φ−7 +HEM ≈ 0

e−4φ(∇̄2N + 2q̄ijφ,iN,j)− e−6φN

(
Ḡijkl

π̄ij π̄kl

|q̄|
+
HEM√
q̄

)
≈ 0.
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Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

The second-class constraints can be solved exactly if
we assume the conformal initial data:

q̄ij = ηij

π̄ij = 0

Āi = 0

Ē i = −δir
(
Q
r2

)
Where ηij is the flat spatial metric in spherical coordinates and
Ē i = e6φE i is the spherically symmetric electric field in this
background.



Parity Horizons, Black Holes, and Chronology Protection in Shape Dynamics. 14/44

Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

Since the conformal initial data is written in terms of the flat
spatial metric ηij , the scalar curvature R vanishes, and the
coupled Lichnerowicz-York constraint

√
q̄
(
8∇̄2φ− R̄φ

)
+
π̄ij π̄

ij − π̄2

√
q̄

φ−7 ≈ 0.

reduces to the simple expression:

8Ω3∇̄2Ω +
HEM√
q̄

= 0.

Where Ω = eφ. Writing HEM√
q̄

in terms of Q and r gives:

8Ω3

(
Ω′′ +

2

r
Ω′
)

+
2Q2

r4
= 0

Where primes denote differentiation with respect to r .
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Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

The last equation is difficult to solve in its present form, but it
can be simplified by making the substitution Ω2 = ψ, which
yields:

− 2 (ψ′)
2

+ 4ψψ′′ +
8

r
ψψ′ +

2Q2

r4
= 0. (∗)

Now this equation can be solved by making a Laurent series
ansatz:

ψ =
∞∑
n=0

cnr
−n.

Now the derivatives of ψ can be easily calculated and inserted
back into (∗) to yield the infinite double sum:

∞∑
m=0

∞∑
n=0

cmcn [−2mn + 4n(n + 1)− 8n] r−(2+m+n) = −2Q

r4
.
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Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

In order for this equation to be satisfied to all orders, all terms for
which m + n 6= 2 on the left-hand side must vanish.

This implies that cn = 0 for n > 2, which means that the series
terminates.

Collecting the terms proportional to r−4 on the left hand side gives:

Q2 + 4c0c2 − c2
1 = 0.

Imposing the boundary conditions c0 = 1, c1 = m, this equation can
be solved for c2 in terms of the mass m and electric charge Q:

c2 =
m2 − Q2

4
.



Parity Horizons, Black Holes, and Chronology Protection in Shape Dynamics. 16/44

Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

In order for this equation to be satisfied to all orders, all terms for
which m + n 6= 2 on the left-hand side must vanish.

This implies that cn = 0 for n > 2, which means that the series
terminates.

Collecting the terms proportional to r−4 on the left hand side gives:

Q2 + 4c0c2 − c2
1 = 0.

Imposing the boundary conditions c0 = 1, c1 = m, this equation can
be solved for c2 in terms of the mass m and electric charge Q:

c2 =
m2 − Q2

4
.



Parity Horizons, Black Holes, and Chronology Protection in Shape Dynamics. 16/44

Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

In order for this equation to be satisfied to all orders, all terms for
which m + n 6= 2 on the left-hand side must vanish.

This implies that cn = 0 for n > 2, which means that the series
terminates.

Collecting the terms proportional to r−4 on the left hand side gives:

Q2 + 4c0c2 − c2
1 = 0.

Imposing the boundary conditions c0 = 1, c1 = m, this equation can
be solved for c2 in terms of the mass m and electric charge Q:

c2 =
m2 − Q2

4
.



Parity Horizons, Black Holes, and Chronology Protection in Shape Dynamics. 16/44

Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

In order for this equation to be satisfied to all orders, all terms for
which m + n 6= 2 on the left-hand side must vanish.

This implies that cn = 0 for n > 2, which means that the series
terminates.

Collecting the terms proportional to r−4 on the left hand side gives:

Q2 + 4c0c2 − c2
1 = 0.

Imposing the boundary conditions c0 = 1, c1 = m, this equation can
be solved for c2 in terms of the mass m and electric charge Q:

c2 =
m2 − Q2

4
.



Parity Horizons, Black Holes, and Chronology Protection in Shape Dynamics. 17/44

Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

With all of the constants in our Laurent series ansatz fixed, we are
left with:

ψ = 1 +
m

r
+

m2 − Q2

4r2
=⇒ Ω =

(
1 +

m

r
+

m2 − Q2

4r2

)1/2

.

Putting this result back into the coupled lapse-fixing equation gives
the second order, ODE

Ω4

(
N ′′ + 2

(
1

r
+

Ω′

Ω

)
N ′
)
− Q2

r4
N = 0

Which with ordinary asymptotically flat boundary conditions has the
unique solution

N =
1− m2−Q2

4r2

1 + m
r + m2−Q2

4r2

.
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Shape Dynamics Black Holes

A Charged Shape Dynamic Black Hole

The solutions of the second class constraints allow us to
reconstruct a Lorentzian line-element:

ds2 = −N2dt2 + e4φ
(
dr2 + r2

(
dθ2 + sin2(θ)dφ2

))
Where we have chosen the shift vector to be zero in accordance with
spherical symmetry.

The physical electric field after conformal rescaling becomes:

E i = e−6φĒ i = −δir
(
Q

r2

)[(
1 +

m

2r

)2

−
(
Q

2r

)2
]−3
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Shape Dynamics Black Holes

Charge, Parity and Time-reversal

The event horizon of this solution is located at
r = r∗ = 1

2

√
m2 − Q2.

The spatial metric is invariant under the “parity” r → r2
∗
r

,
as well as time-reversal and charge-conjugation.

The lapse is invariant under charge-conjugation and
changes sign under parity and time-reversal.

The electric field is invariant under time-reversal and
changes sign under parity and charge-conjugation...
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Shape Dynamics Black Holes
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Shape Dynamics Black Holes

The Solution is CPT Invariant!

Both the gravitational field and the electric field are
invariant under CPT transformations.
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Shape Dynamics Black Holes

Axisymmetric Solutions and Rotating Black Holes

H. Gomes, G. Herczeg arXiv:1310.6095 [gr-qc]
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Shape Dynamics Black Holes

The Stationary, Axisymmetric Line Element

We begin our consideration of rotating black holes by analyzing the
stationary, axisymmetric line element:

ds2 = −(N2 − ΩΨξ2)dt2 + Ω[(dx1)2 + (dx2)2 + Ψdφ2] + 2ΩΨξdφdt

Every stationary, axisymmetric solution of Einstein’s equations can
(locally) be put in the above form (e.g. Bergamini, Viaggiu 2003).

We will show that the ADM decomposition of this line element can be
mapped onto a shape dynamics solution.

Generic local equivalence of GR and shape dynamics
=⇒ most general local form of the shape dynamics solution.
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Shape Dynamics Black Holes

A Quick Calculation

A quick calculation shows that the ADM decomposition of the
axsymmetric line element is maximally sliced, i.e. it satisfies the Weyl
constraint:

We start with Hamilton’s equation for q̇ij :

q̇ij = 2N(Ω3Ψ)−1/2(πij −
1

2
πqij) + (Lξq)ij

where (Lξq)ij denotes the Lie derivative of the spatial metric along the
shift vector. Using stationarity and axisymmetry, the trace of this
equation becomes:

−N(Ω3Ψ)−1/2π = 0.

Which shows that the stationary, axisymmetric line element satisfies the
Weyl constraint.
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Shape Dynamics Black Holes

The Kerr Spacetime

Now that we have established this boring lemma, we can use it for
exciting things!

We can always express a stationary, axisymmetric general relativistic
black hole in a form that satisfies the Weyl constraint.

This should give us a local expression for the corresponding solution
of shape dynamics.

In the Boyer-Lindquist coordinates, the Kerr metric takes the form:

ds2 = −
∆

Σ

(
dt − a sin2 θdφ

)2
+

sin2 θ

Σ

(
(r2

BL + a2)dφ− adt
)2

+
Σ

∆
dr2

BL + Σdθ2

where

∆ = r 2
BL − 2mrBL + a2, Σ = r 2

BL + a2 cos2 θ.
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Shape Dynamics Black Holes

Prolate Spheroidal Coordinates

Next, we would like to put this solution in a form which we know satsifies
the Weyl constraint.

Change to prolate spheroidal coordinates:

rBL =
√
m2 − a2 coshµ+ m

In these coordinates, the line element reads:

ds2 = −λ−1(dt − ωdφ)2 + λ[m2e2γ(dµ2 + dθ2) + s2dφ2]

where

s = mp sinhµ sin θ

e2γ = p2 cosh2 µ+ q2 cos2 θ − 1

ω = e−2γ
[
2a sin2 θ(p coshµ+ 1)

]
λ = e−2γ

[
(p coshµ+ 1)2 + q2 cos2 θ

]
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Conformal Regularity of the Horizon

In the prolate spheroidal coordinate system the horizon is located at
µ = 0 where the lapse function vanishes.

Unlike in the Boyer-lindquist system, the determinant of the spatial
metric det(q) = m4e4γλ2(λs2 − λ−1ω2) is finite and non-zero
throughout the coordinate domain.

Since the determinant of the space-time metric can be written√
−g = N

√
q, the space-time metric is degenerate on the horizon

where the lapse vanishes.

Analysis of conformal-diffeo invariants constructed from the cotton
tensor shows no physical singularities on the horizon.
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Properties

The ADM decomposition of this line element is a rotating
black hole solution for shape dynamics.

It has some interesting properties:

Like the spherically symmetric case, it is a wormhole
solution.

The horizon is asymptotically invariant under a
combination of the parity µ→ −µ (which leaves the
spatial metric invariant) and time reversal t → −t.

It is free of physical singularities.

Unlike the Kerr solution, it is free of inner horizons
and closed time-like curves. More on this coming up...
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Summary of Shape Dynamic Black Holes

The CPT invariance of the charged shape dynamic black
hole provides an interesting link between shape dynamic
black holes and the standard model.

The asymptotic PT symmetry of the rotating black hole
provides evidence that rotating charged shape dynamic
black holes possess asymptotic CPT symmetry.

Further study is needed to determine whether there is a
deep reason for this coincidence.

Now we will shift gears to discuss how similar “parity
horizons” arise in solutions of shape dynamics which are
not black holes.
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Parity Horizons

The shape dynamic black hole solutions we have seen so far share certain
features in common which motivate the following definition:

If a solution of shape dynamics has a discrete spatial
diffeomorphism P and a surface S0 such that:

The lapse function N vanishes (or diverges) on S0

P maps the exterior of S0 into the interior of S0, and maps S0 into
itself

P is an isometry, i.e. P [qij ] = qij

and P changes the sign of the lapse, i.e. P [N] = −N
Then we call P a parity and S0 a parity horizon.

We will see that not only the event horizons of black holes, but other
types of horizons become parity horizons in shape dynamics.
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Rindler Space

The Rindler Chart over Minkowski space represents flat space-time as
seen by a congruence of uniformly accelerating observers.

In order to construct the Rindler chart, one can begin with Cartesian
coordinates over Minkowski spacetime. The line element is simply:

ds2 = −dT 2 + dX 2 + dY 2 + dZ 2.

If one then introduces the coordinate transformation

t =
1

κ
tanh−1

(
T

X

)
, x =

√
X 2 − T 2, y = Y , z = Z

one obtains the Rindler chart with the line element

ds2 = −κ2x2dt2 + dx2 + dy2 + dz2.
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Rindler Space in Shape Dynamics

In shape dynamics, Rindler Space can be derived by considering the
flat initial data qij = δij , π

ij = 0, and choosing the gauge
φ = 0 = ξi .

In this simple case, the lapse-fixing equation reduces to Laplace’s
equation, ∇2N = 0. The general solution of the lapse-fixing equation
for this initial data is now trivially given by the harmonic functions.

Asymptotically flat BCs:

N|r → ∞= 1, ∂N
∂r

∣∣
x=0
∼ O(r−2)

=⇒ Minkowski:

N = 1.

Horizon BCs:

N|x = 0= 0, ∂N
∂x

∣∣
x=0

= κ

=⇒ Rindler:

N = κx .
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The Rindler Horizon is a Parity Horizon!

Despite the fact that the Rindler horizon is observer dependent, it is
still represented as a parity horizon in shape dynamics.

This can be seen by noting that N(x = 0) = 0 and under the parity
x → −x , the lapse and spatial metric transform as:

Lapse:

N(x) = κx → −κx = −N(x)

The lapse changes sign under
parity inversion.

Spatial Metric:

qij = δij → δij = qij

The spatial metric is invariant
under parity inversion.
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Comparison of Rindler space in GR and SD

Rindler in GR

The line element
ds2 = −κ2x2dt2 + dx2 + dy2 + dz2

is valid only for x > 0.

At x = 0 the determinant of the
space-time metric det(g) = −κ2x2

goes to zero, and the horizon is a
coordinate singularity.

In order to cover the whole space
one needs to describe the right
(x > 0) and left (x < 0) Rindler
wedges separately.

Rindler in SD

The spatial metric qij = δij is valid
for all real values of x.

The determinant of the spatial
metric det(q) = 1 is constant and
there is no singularity at the
horizon.

This is typical of parity horizons on
which the lapse vanishes.

Next we will consider a class of
solutions of SD which have parity
horizons on which the lapse
diverges...
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Chronology Protection in Shape Dynamics

The remainder of this talk will focus on physical differences
between GR and shape dynamics that arise as a result of
Cauchy horizons containing (on the GR side) closed time-like
curves.

We use a simple example to demonstrate that where GR would
predict CTCs, shape dynamics does not.
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Closed Time-like Curves

Let us first consider basic properties of solutions of
Einstein’s equations with closed time-like curves (CTCs).

The simplest solutions of general relativity with CTCs are
axisymmetric and have a surface on which qφφ = 0 that
separates spatial infinity from some interior, acausal
region.

In the interior region, qφφ < 0 so that φa = δaφ becomes

timelike: φaφbqab = qφφ < 0.

Since φ is periodic, the integral curves of φa are closed
=⇒ the interior region contains CTCs.
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The Bonner Space-Time

A Simple Example: The Bonner Space-Time.

ds2 = −dt2 + 2Kdφdt + e2Ψ
(
dr2 + r2dθ2

)
+
(
r2 sin2 θ − K 2

)
dφ2.

Where K (r , θ) = 2h
r sin2 θ, and Ψ(r , θ) = h2

4 r
−4 sin2 θ

(
sin2 θ − 8 cos2 θ

)
,

and h is an area parameter.

This rigidly rotating dust solution is stationary, axisymmetric
and has a compact Cauchy horizon defined by:

r2 sin2 θ − 4h2

r2
sin4 θ = gφφ = 0 or r2 = 2h sin θ

Within which there are closed time-like curves.
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Shape of the Cauchy Horizon in the Bonner Space-Time

The Cauchy horizon in the Bonner Space-time has roughly the
shape of a torus whose inner radius is shrunk to zero.

Above: Plot of the Bonner space-time’s Cauchy horizon in the
ρ-z half-plane.
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The Shape Dynamic Alternative

It can be shown by the same methods just used that the shape
dynamic solution that agrees with the Bonner space-time
outside the Cauchy horizon is given by:

ds2 = −dt2 + 2K (u, v)dφdt +
u2/3v2/3

32

(
v2/3 − u2/3

)2

u2/3 + v2/3
dφ2

+ e2Ψ(u,v)
[
Q+(u, v)

(
u−2/3du2 + v−2/3dv2

)
+ 2Q−(u, v)u−1/3v−1/3dudv

]
Where (u, v) are coordinates adapted to the Cauchy horizon located at
u = 0, α = h1/3 and

Q±(u, v) =
1

18

[
α

u2/3 + v2/3
±
(
u2/3 + v2/3

) (
v2/3 − u2/3

)2(
v2/3 − u2/3

)2 − 16α2

]
.
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The Cauchy Horizon is a Parity Horizon

The new coordinate system is chosen such that the
determinant of the spatial metric is everywhere finite and
nonzero.

The key feature is that the solution is invariant under the
parity u → −u.

This transformation maps the interior into the exterior and
maps the horizon into itself.

This makes it obvious that the interior region contains no
closed time-like curves.

Similar arguments can (presumably) be made for any
stationary, axisymmetric solution with a compact Cauchy
horizon containing closed time-like curves.
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Chronological Horizons are Physical Singularities!

The Bonner solution for shape dynamics does not contain closed
time-like curves.

However, the chronological parity horizon is generated by
causality-violating closed null curves.

The spatial metric and momentum contain components which
diverge on the chronological horizon.

By analyzing an invariant of the conformal spatial geometry, we can
see that the horizon is an extended, physical singularity.

We consider the square of the Cotton tensor C ijkCijk , where

Cijk := ∇k

(
Rij −

R

4
qij

)
−∇j

(
Rik −

R

4
qik

)

The Cotton tensor contains all of the local information on the conformal
structure of a three dimensional Riemmanian manifold.
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time-like curves.

However, the chronological parity horizon is generated by
causality-violating closed null curves.

The spatial metric and momentum contain components which
diverge on the chronological horizon.

By analyzing an invariant of the conformal spatial geometry, we can
see that the horizon is an extended, physical singularity.
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Denominator of C ijkCijk :

Three plots of the denominator of
the invariant C ijkCijk with different
domains and ranges.

Each plot displays the denominator
of the invariant tending to zero on
the horizon, indicating that the
invariant diverges there.
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A (Somewhat) More General Analysis

The spatial line element of any stationary, axisymmetric solution of shape
dynamics may be locally written in the form:

d`2 = Ω(ρ, z)
(
dρ2 + dz2 + ψ(ρ, z)dφ2

)
The square of the cotton tensor for this line element can be written as:

C ijkCijk =
(Third derivatives of ψ...)2

(ψ (ρ, z))6 (Ω (ρ, z))3

Since the chronological horizon is defined by ψ(ρ, z) = 0, we see that this
invariant generically diverges unless all of the (many) terms in the
numerator conspire to cancel this divergence.
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Summary

Shape dynamic black holes are physically different from
general relativistic black holes.

The known shape dynamic black hole solutions are free of
physical singularities and exhibit (C)PT invariance.

The simple example of the Bonner space-time hints that
solutions of shape dynamics may avoid the formation of
closed time-like curves in general.

This would be a somewhat more parsimonious chronology
protection mechanism than the corresponding arguments
for general relativity.
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Questions?

Thank You!
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