

A Shape Dynamics Workshop

Typical universes and the origin of the second law

Julian Barbour

with Flavio Mercati and Tim Koslowski

Pure Inertial Motion

Poincaré recurrences

Typical Newtonian 3-body solution

Key Concepts and Quantities

$$|V_{
m Newton}|/m_{
m tot}^2 = rac{1}{m_{
m tot}^2} \sum_{a < b} m_a \, m_b \, rac{r_{ab}^{-1}}{\ell} = rac{1}{\ell} \quad
ightarrow \quad \ell = {
m `mean \ harmonic \ length'}$$

$$I_{\rm cm}/m_{
m tot} = rac{1}{m_{
m tot}^2} \sum_{a < b} m_a \, m_b \, rac{r_{ab}^2}{ab} = L^2 \quad o \quad L = {
m `root \ mean \ square \ length'}$$

'Complexity'
$$\left| C_{\mathsf{S}} = rac{L}{\ell}
ight|$$
 a sensitive measure of clustering

Shape Space
$$S := \frac{Q}{Sim}$$
, Q: Newtonian configuration space

The shape-dynamical description (3-body case)

6N-12 dofs. Two are dilatational momentum and moment of inertia:

$$D = \sum_{a=1}^{N} \mathbf{r}_a \cdot \mathbf{p}^a, \qquad I_{cm} = \sum_{a < b} m_a m_b ||\mathbf{r}_a - \mathbf{r}_b||^2,$$

What remains are the 6N-14 shape (scale-invariant) degrees of freedom, forming shape space and shape momenta:

If N=3 shape space is the space of triangles. 2 internal angles characterize a triangle: shape space is 2D.

The Lagrange-Jacobi Relation

If
$$V(\alpha \mathbf{r}_a) = \alpha^k V(\mathbf{r}_a)$$
 then $\frac{1}{2}\ddot{I}_{\text{cm}} = E_{\text{cm}} - 2(k+2)V$ L—J or virial relation

If
$$E_{\rm cm} \geq 0$$
, then since $V_{\rm New} < 0$ with $k = -1$ we have $\ddot{I}_{\rm cm} > 0$

The dilatational momentum $D = \sum_a \mathbf{r}_a \cdot \mathbf{p}^a \ (= \frac{1}{2} \dot{I}_{\text{cm}})$ is *monotonic*

Dynamical Similarity:

$$\mathbf{r}_a \to \alpha \ \mathbf{r}_a, \ t \to \alpha^{1-k/2} t$$

maps solutions to solutions \Rightarrow absolute scale invisible on S

Change of scale is manifested as attractor behaviour on S

Topology of Shape Space and attractor behaviour

In the SD description, $-\log C_S$ acts as a potential on shape space and the dynamics appears dissipative (therefore C_S grows secularly)

Typical 3-body solution

Typical 3-body solution

1000-body simulation

Theory of mid-point data

D=0 unique point in each solution.

Natural place to set *mid-point* data.

A point and a *direction* in S determine a solution starting at D=0

(an element of PT*S, the *projectivized cotangent bundle*).

Natural induced measure on PT*S from symplectic structure in extended phase space.

Laplace's principle of indifference

Given N possibilities and no further information, assign equal probability to each possibility.

We know the law, now we want to predict what the *typical solutions* will be like.

'Blindfolded Creator' throwing darts on S

Late-time θ vs. Janus-point C_s in 3-body problem

Complexity vs. shape space volume

