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Poincaré recurrences
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Typical Newtonian 3-body solution
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Key Concepts and Quantities

|VNewton|/m2
tot = 1

m2
tot

∑
a<b

mamb r
−1
ab = 1

` → ` =‘mean harmonic length’

Icm/m tot = 1
m2

tot

∑
a<b

mamb r
2
ab = L2 → L = ‘root mean square length’

‘Complexity’ CS =
L

`
a sensitive measure of clustering

Shape Space S := Q
Sim, Q: Newtonian configuration space
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The shape-dynamical description (3-body case)

6N − 12 dofs. Two are dilatational momentum and moment of inertia:

D =
N∑
a=1

ra · pa , Icm =
∑
a<b

mamb‖ra − rb‖2 ,

What remains are the 6N − 14 shape (scale-invariant) degrees of freedom,
forming shape space and shape momenta:

If N = 3 shape space is the
space of triangles. 2 internal
angles characterize a triangle:
shape space is 2D.
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The Lagrange–Jacobi Relation

If V (αra) = αkV (ra) then
1

2
Ïcm = Ecm − 2(k + 2)V L–J or virial relation

If Ecm ≥ 0 , then since VNew < 0 with k = −1 we have Ïcm > 0

The dilatational momentum D =
∑
a ra · pa (= 1

2İcm) is monotonic

Dynamical Similarity:

ra → α ra, t→ α1−k/2t

maps solutions to solutions ⇒ absolute scale invisible on S

Change of scale is manifested as attractor behaviour on S
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Topology of Shape Space and attractor behaviour

In the SD description, − logCS acts as a potential on shape space
and the dynamics appears dissipative (therefore CS grows secularly)
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Typical 3-body solution
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Typical 3-body solution
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1000-body simulation
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Theory of mid-point data

D = 0 unique point in each solution.

Natural place to set mid-point data.

A point and a direction in S determine a solution starting at D = 0

(an element of PT∗S, the projectivized cotangent bundle).

Natural induced measure on PT∗S
from symplectic structure in extended phase space.
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Laplace’s principle of indifference

Given N possibilities and no further information,
assign equal probability to each possibility.

We know the law, now we want to predict
what the typical solutions will be like.
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‘Blindfolded Creator’ throwing darts on S
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Late-time θ vs. Janus-point CS in 3-body problem
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Complexity vs. shape space volume
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