SD@

A Shape Dynamics Workshop

Typical universes and the origin of the second law

Julian Barbour

with Flavio Mercati and Tim Koslowski

Pure Inertial Motion

Poincaré recurrences

Typical Newtonian 3-body solution

Key Concepts and Quantities

$$
\begin{aligned}
\left|V_{\text {Newton }}\right| / m_{\text {tot }}^{2} & =\frac{1}{m_{\text {tot }}^{2}} \sum_{a<b} m_{a} m_{b} r_{a b}^{-1}=\frac{1}{\ell} \quad \rightarrow \quad \ell=\text { 'mean harmonic length' } \\
I_{\mathrm{cm}} / m_{\text {tot }} & =\frac{1}{m_{\text {tot }}^{2}} \sum_{a<b} m_{a} m_{b} r_{a b}^{2}=L^{2} \quad \rightarrow \quad L=\text { 'root mean square length' }
\end{aligned}
$$

$$
\text { 'Complexity' } \quad C_{\mathrm{S}}=\frac{L}{\ell} \quad \text { a sensitive measure of clustering }
$$

Shape Space $\quad S:=\frac{Q}{\operatorname{Sim}}, \quad \mathrm{Q}$: Newtonian configuration space

The shape-dynamical description (3-body case)

$6 N-12$ dofs. Two are dilatational momentum and moment of inertia:

$$
D=\sum_{a=1}^{N} \mathbf{r}_{a} \cdot \mathbf{p}^{a}, \quad \quad I_{\mathrm{cm}}=\sum_{a<b} m_{a} m_{b}\left\|\mathbf{r}_{a}-\mathbf{r}_{b}\right\|^{2}
$$

What remains are the $6 N-14$ shape (scale-invariant) degrees of freedom, forming shape space and shape momenta:

If $N=3$ shape space is the space of triangles. 2 internal angles characterize a triangle: shape space is 2D.

The Lagrange-Jacobi Relation

If $V\left(\alpha \mathbf{r}_{a}\right)=\alpha^{k} V\left(\mathbf{r}_{a}\right)$ then $\frac{1}{2} \ddot{I}_{\mathrm{cm}}=E_{\mathrm{cm}}-2(k+2) V \quad L-J$ or virial relation

If $E_{\mathrm{cm}} \geq 0$, then since $V_{\text {New }}<0$ with $k=-1$ we have $\ddot{I}_{\mathrm{cm}}>0$
The dilatational momentum $D=\sum_{a} \mathbf{r}_{a} \cdot \mathbf{p}^{a}\left(=\frac{1}{2} \dot{I}_{\mathrm{cm}}\right)$ is monotonic

Dynamical Similarity:

$$
\mathbf{r}_{a} \rightarrow \alpha \mathbf{r}_{a}, \quad t \rightarrow \alpha^{1-k / 2} t
$$

maps solutions to solutions \Rightarrow absolute scale invisible on S

Change of scale is manifested as attractor behaviour on S

Topology of Shape Space and attractor behaviour

In the SD description, $-\log C_{\mathrm{S}}$ acts as a potential on shape space and the dynamics appears dissipative (therefore $C_{\text {s }}$ grows secularly)

Typical 3-body solution

Typical 3-body solution

1000-body simulation

Theory of mid-point data

$$
D=0 \text { unique point in each solution. }
$$

Natural place to set mid-point data.

A point and a direction in S determine a solution starting at $D=0$
(an element of PT *S, the projectivized cotangent bundle).

> Natural induced measure on $\mathrm{PT}^{*} \mathrm{~S}$
> from symplectic structure in extended phase space.

Laplace's principle of indifference

Given N possibilities and no further information, assign equal probability to each possibility.

We know the law, now we want to predict what the typical solutions will be like.

‘Blindfolded Creator’ throwing darts on S

Late-time θ vs. Janus-point $C_{\mathbf{s}}$ in 3-body problem

Complexity vs. shape space volume

