What Shape Dynamics Is

Sean Gryb

Radboud Universiteit Nijmegen Institute for Mathematics, Astrophysics and Particle Physics

Perimeter Institute June 26, 2015

What is Shape Dynamics?

Intro •OO

What is Shape Dynamics?

Firstly

Intro •00

> Shape Dynamics is a theory of gravity where local (spatial) scale is relative and simultaneity is fixed. It is locally — but no always globally — equivalent to GR.

Firstly

Shape Dynamics is a theory of gravity where local (spatial) scale is relative and simultaneity is fixed. It is locally — but no always globally — equivalent to GR.

But also,

An ambition to describe the quantum physics of gravitation in completely scale-invariant, relational terms.

Firstly

Shape Dynamics is a theory of gravity where local (spatial) scale is relative and simultaneity is fixed. It is locally — but no always globally — equivalent to GR.

But also,

An ambition to describe the quantum physics of gravitation in completely scaleinvariant, relational terms.

 \Rightarrow ontological shift from a spacetime picture to a picture of evolving conformal geometry.

What is Shape Dynamics?

Firstly

Shape Dynamics is a theory of gravity where local (spatial) scale is relative and simultaneity is fixed. It is locally — but no always globally — equivalent to GR.

But also,

An ambition to describe the quantum physics of gravitation in completely scaleinvariant, relational terms.

 \Rightarrow ontological shift from a spacetime picture to a picture of evolving conformal geometry.

In a word...

What is Shape Dynamics?

Firstly

Shape Dynamics is a theory of gravity where local (spatial) scale is relative and simultaneity is fixed. It is locally — but no always globally — equivalent to GR.

But also,

An ambition to describe the quantum physics of gravitation in completely scaleinvariant, relational terms.

 \Rightarrow ontological shift from a spacetime picture to a picture of evolving conformal geometry.

In a word...

... Shape Dynamics is the world one shape after another.

000

Why
$$g_{ab}^{(3)}
ightarrow e^{\phi(x)} g_{ab}^{(3)}$$
?

Why
$$g_{ab}^{(3)}
ightarrow e^{\phi(x)}g_{ab}^{(3)}$$
?

ullet Relatvity of scale (Weyl o Barbour).

Why
$$g_{ab}^{(3)}
ightarrow e^{\phi(x)}g_{ab}^{(3)}$$
?

- ullet Relatvity of scale (Weyl o Barbour).
- Clean observable/evolution split.

Why
$$g_{ab}^{(3)}
ightarrow e^{\phi(x)} g_{ab}^{(3)}$$
?

- ullet Relatvity of scale (Weyl ightarrow Barbour).
- Clean observable/evolution split.
- Quantum Field Theory ⇒ new theory space.

Intro 000

Why
$$g_{ab}^{(3)}
ightarrow e^{\phi(x)} g_{ab}^{(3)}$$
?

- ullet Relatvity of scale (Weyl o Barbour).
- Clean observable/evolution split.
- Quantum Field Theory ⇒ new theory space.
- The hell of it...

Old Observation (1970s)

Intro 000

• Fix foliation (CMC) ⇒ initial data is conformal

Old Observation (1970s)

- Fix foliation (CMC) ⇒ initial data is conformal
- York '72:

"An increasing amount of evidence shows that the true dynamical degrees of freedom of the gravitational field can be identified directly with the conformally invariant geometry of three-dimensional spacelike hypersurfaces embedded in spacetime."

Old Observation (1970s)

- Fix foliation (CMC) ⇒ initial data is conformal
- York '72:

"An increasing amount of evidence shows that the true dynamical degrees of freedom of the gravitational field can be identified directly with the conformally invariant geometry of three-dimensional spacelike hypersurfaces embedded in spacetime."

New Observation (2000s)

Fix foliation (CMC) ⇒ gauge invariant dofs (observables) are conformal.

Old Observation (1970s)

- Fix foliation (CMC) ⇒ initial data is conformal
- York '72:

"An increasing amount of evidence shows that the true dynamical degrees of freedom of the gravitational field can be identified directly with the conformally invariant geometry of three-dimensional spacelike hypersurfaces embedded in spacetime."

New Observation (2000s)

- Fix foliation (CMC) ⇒ gauge invariant dofs (observables) are conformal.
- ullet Duality \Rightarrow conformal gauge of Shape Dynamics equal to a foliation of GR.

Old Observation (1970s)

- Fix foliation (CMC) ⇒ initial data is conformal
- York '72:

"An increasing amount of evidence shows that the true dynamical degrees of freedom of the gravitational field can be identified directly with the conformally invariant geometry of three-dimensional spacelike hypersurfaces embedded in spacetime."

New Observation (2000s)

- Fix foliation (CMC) ⇒ gauge invariant dofs (observables) are conformal.
- ullet Duality \Rightarrow conformal gauge of Shape Dynamics equal to a foliation of GR.

Global Differences:

 Physically different classical solutions (black holes, cosmological toy models,...).

Old Observation (1970s)

- Fix foliation (CMC) ⇒ initial data is conformal
- York '72:

"An increasing amount of evidence shows that the true dynamical degrees of freedom of the gravitational field can be identified directly with the conformally invariant geometry of three-dimensional spacelike hypersurfaces embedded in spacetime."

New Observation (2000s)

- Fix foliation (CMC) ⇒ gauge invariant dofs (observables) are conformal.
- ullet Duality \Rightarrow conformal gauge of Shape Dynamics equal to a foliation of GR.

Global Differences:

- Physically different classical solutions (black holes, cosmological toy models,...).
- New scenarios for quantum theory (theory space, observable/evolution split,...).

Canonical GR

3+1 decomposition

$g_{\mu u} ightarrow$

- (g_{ab}, \dot{g}_{ab}) : dynamic variables
- \bullet (N, N^a): embedding variables

Canonical GR

3+1 decomposition

 $g_{\mu
u}
ightarrow$

• (g_{ab}, \dot{g}_{ab}) : dynamic variables

• (N, N^a) : embedding variables

Symplectic Form: $(g_{ab}, \dot{g}_{ab}) \rightarrow (g_{ab}, \pi^{ab})$ and $\{\cdot, \cdot\}$

3+1 decomposition

$g_{\mu u} ightarrow$

- (g_{ab}, \dot{g}_{ab}) : dynamic variables
- (N, N^a) : embedding variables

Symplectic Form: $(g_{ab},\dot{g}_{ab}) o (g_{ab},\pi^{ab})$ and $\{\cdot,\cdot\}$

 \Rightarrow Hamilton vector field: $v_g(f) = \{f, g\}$ (directional derivative).

3+1 decomposition

$g_{\mu\nu} \rightarrow$

- (g_{ab}, \dot{g}_{ab}) : dynamic variables
- (N, N^a): embedding variables

Symplectic Form: $(g_{ab}, \dot{g}_{ab}) \rightarrow (g_{ab}, \pi^{ab})$ and $\{\cdot, \cdot\}$ \Rightarrow Hamilton vector field: $v_g(f) = \{f, g\}$ (directional derivative).

But,

Non-invertible Legendre transform

Constraints:

• Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0 \ \forall \ N^c$. $\Rightarrow v_{\text{Diff}} = \text{infinitesimal 3-diff.}$

3+1 decomposition

$g_{\mu\nu} \rightarrow$

- (g_{ab}, \dot{g}_{ab}) : dynamic variables
- (N, N^a): embedding variables

Symplectic Form: $(g_{ab}, \dot{g}_{ab}) \rightarrow (g_{ab}, \pi^{ab})$ and $\{\cdot, \cdot\}$ \Rightarrow Hamilton vector field: $v_g(f) = \{f, g\}$ (directional derivative).

But,

Non-invertible Legendre transform

Constraints:

- Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab} = 0 \ \forall \ N^c$, $\Rightarrow \nu_{\text{Diff}} = \text{infinitesimal 3-diff.}$
- Ham: $K(\pi^{ab}, g_{ab}) + V(g_{ab}, \nabla g, ...) = 0$ $\Rightarrow v_{\text{Ham}} = \text{hypersurface deformations AND evolution}$

 \bullet Phase space: (g_{ab},π^{ab}) and $\{\cdot,\cdot\}$ \Rightarrow Same as ADM

- Phase space: (g_{ab}, π^{ab}) and $\{\cdot, \cdot\}$ \Rightarrow Same as ADM
- Constraints:
 - Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0\ \forall\ N^c$ (Same as ADM)

- Phase space: (g_{ab}, π^{ab}) and $\{\cdot, \cdot\}$ \Rightarrow Same as ADM
- Constraints:

 - Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0\ \forall\ N^c$ (Same as ADM) Conf: $g_{ab}\pi^{ab}=0$ $\Rightarrow v_{Conf} = infinitesimal conformal transformations.$

Shape Dynamics

- Phase space: (g_{ab}, π^{ab}) and $\{\cdot, \cdot\}$ \Rightarrow Same as ADM
- Constraints:
 - Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0\ \forall\ N^c$ (Same as ADM)
 - Conf: $g_{ab}\pi^{ab} = 0$ $\Rightarrow v_{\text{Conf}} = \text{infinitesimal conformal transformations.}$
- Hamiltonian: $H_{SD}(\tau) = \int d^3x \, e^{6\phi(g_{ab},\pi^{ab},\tau)} \sqrt{g}$ where $\phi(g_{ab},\pi^{ab},\tau) = \text{solution to elliptic PDE.}$ $\Rightarrow v_{H_{SD}} = \text{time evolution}$

- Phase space: (g_{ab}, π^{ab}) and $\{\cdot, \cdot\}$ \Rightarrow Same as ADM
- Constraints:
 - Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0\ \forall\ N^c$ (Same as ADM)
 - Conf: $g_{ab}\pi^{ab} = 0$ $\Rightarrow v_{\text{Conf}} = \text{infinitesimal conformal transformations.}$
- Hamiltonian: $H_{SD}(\tau) = \int d^3x \, e^{6\phi(g_{ab},\pi^{ab},\tau)} \sqrt{g}$ where $\phi(g_{ab},\pi^{ab},\tau) = \text{solution to elliptic PDE.}$ $\Rightarrow v_{H_{SD}} = \text{time evolution}$

Note: clean observable/dynamics split (hence, "Shape Dynamics").

- Phase space: (g_{ab}, π^{ab}) and $\{\cdot, \cdot\}$ \Rightarrow Same as ADM
- Constraints:
 - Diff: $g_{ab}\mathcal{L}_{N^c}\pi^{ab}=0\ \forall\ N^c$ (Same as ADM)
 - Conf: $g_{ab}\pi^{ab} = 0$ $\Rightarrow v_{\text{Conf}} = \text{infinitesimal conformal transformations.}$
- Hamiltonian: $H_{SD}(\tau) = \int d^3x \, e^{6\phi(g_{ab},\pi^{ab},\tau)} \sqrt{g}$ where $\phi(g_{ab},\pi^{ab},\tau) = \text{solution to elliptic PDE.}$ $\Rightarrow v_{H_{SD}} = \text{time evolution}$

Note: clean observable/dynamics split (hence, "Shape Dynamics").

Duality: When $\phi = 0$ and $N = N_{\rm CMC}$, then $v_{H_{\rm SD}} = v_{\rm Ham}$.

Iconic Diagram

Shape Dynamics versus GR

Classical

• Shape Dynamics black holes are Einstein-Rosen bridges.

Shape Dynamics versus GR

Classical

- Shape Dynamics black holes are Einstein-Rosen bridges.
- N-body cosmology ⇒ Arrow of Time, typicality (Julian's talk).

Shape Dynamics versus GR

Classical

- Shape Dynamics black holes are Einstein-Rosen bridges.
- N-body cosmology ⇒ Arrow of Time, typicality (Julian's talk).

Quantum (?)

• New theory space.

SD vs GR

Classical

- Shape Dynamics black holes are Einstein-Rosen bridges.
- N-body cosmology ⇒ Arrow of Time, typicality (Julian's talk).

Quantum (?)

- New theory space.
- Split between observables and evolution.

Summary/Outlook

• Shape Dynamics ⇒ new ontological picture of gravity where conformal symmetry is taken seriously.

Summary/Outlook

- Shape Dynamics ⇒ new ontological picture of gravity where conformal symmetry is taken seriously.
- Locally, but not globally, equivalent to GR.

Summary/Outlook

- Shape Dynamics ⇒ new ontological picture of gravity where conformal symmetry is taken seriously.
- Locally, but not globally, equivalent to GR.
- Ambitions for quantum theory.

Thank You!