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... Shape Dynamics is the world one shape after another.
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Why g3 — e”®g})?

a

@ Relatvity of scale (Weyl — Barbour ).

@ Clean observable/evolution split.

Quantum Field Theory = new theory space.
The hell of it...
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Shape Dynamics Take Home Message

Old Observation (1970s)

e Fix foliation (CMC) = initial data is conformal

@ York '72:
“An increasing amount of evidence shows that the true dynamical degrees
of freedom of the gravitational field can be identified directly with the
conformally invariant geometry of three-dimensional spacelike
hypersurfaces embedded in spacetime.”

New Observation (2000s)

@ Fix foliation (CMC) = gauge invariant dofs (observables) are conformal.

@ Duality = conformal gauge of Shape Dynamics equal to a foliation of GR.

v

Global Differences:
@ Physically different classical solutions (black holes, cosmological toy
models,...).
@ New scenarios for quantum theory (theory space, observable/evolution
split,...).
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Canonical GR

3 4+ 1 decomposition

Buv —
@ (gab, &2p): dynamic variables
e (N, N?): embedding variables

Symplectic Form: (gas, &a6) — (gab, 7°°) and {-, -}
= Hamilton vector field: v,(f) = {f, g} (directional derivative).

But,

Non-invertible Legendre transform

Constraints:

o Diff: gpLyem® =0V N,
= vpiff = infinitesimal 3-diff.
o Ham: K(m®®, gap) + V(gab, Vg, ...) =0
= VHam = hypersurface deformations AND evolution
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Shape Dynamics

@ Phase space: (g, 7?°) and {-,-}
= Same as ADM
o Constraints:

o Diff: gopLycm® =0V N€ (Same as ADM)
e Conf: g, =0
= Vconf = infinitesimal conformal transformations.

. . ab
o Hamiltonian: Hsp(7) = [ d3x e®?(&an™ ’T)\/E
where ¢(gap, 7, 7) = solution to elliptic PDE.
= VHgp = time evolution

Note: clean observable/dynamics split (hence, “Shape Dynamics”).

Duality: When ¢ = 0 and N = Ncmc, then vy = Viam.
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Iconic Diagram
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Shape Dynamics versus GR

Classical

@ Shape Dynamics black holes are Einstein—Rosen bridges.

@ N-body cosmology = Arrow of Time, typicality (Julian’s talk).

A\

Quantum (?)

@ New theory space.

@ Split between observables and evolution.

A\
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Thank You!
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