Quantum Foundations

This series consists of talks in the area of Foundations of Quantum Theory. Seminar and group meetings will alternate.

Seminar Series Events/Videos

Currently there are no upcoming talks in this series.
 

 

Tuesday Jul 04, 2017
Speaker(s): 

In this talk I am going to describe Spekkens’ toy model, a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. In spite of its classical flavour, many aspects that were thought to belong only to quantum mechanics can be reproduced in the model. 

Collection/Series: 
Scientific Areas: 
 

 

Thursday Apr 20, 2017
Speaker(s): 

What is the essence of quantum theory? In the present talk I want to approach this question from a particular operationalist perspective. I take advantage of a recent convergence between operational approaches to quantum theory and axiomatic approaches to quantum field theory. Removing anything special to particular physical models, including underlying notions of space and (crucially) time, what remains is what I shall call "abstract quantum theory".

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Apr 18, 2017

What can we say about the spectra of a collection of microscopic variables when only their coarse-grained sums are experimentally accessible? In this paper, using the tools and methodology from the study of quantum nonlocality, we develop a mathematical theory of the macroscopic fluctuations generated by ensembles of independent microscopic discrete systems. We provide algorithms to decide which multivariate gaussian distributions can be approximated by sums of finitely-valued random vectors.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Mar 28, 2017
Speaker(s): 

Computational complexity theory is a branch of computer science dedicated to classifying computational problems in terms of their difficulty. While computability theory tells us what we can compute in principle, complexity theory informs us regarding what is feasible. In this chapter I argue that the science of quantum computing illuminates the foundations of complexity theory by emphasising that its fundamental concepts are not model-independent. However this does not, as some have suggested, force us to radically revise the foundations of the theory.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Mar 23, 2017
Speaker(s): 

Entropy is an important information measure. A complete understanding of entropy flow will have applications in quantum thermodynamics and beyond; for example it may help to identify the sources of fidelity loss in quantum communications and methods to prevent or control them. Being nonlinear in density matrix, its evaluation for quantum systems requires simultaneous evolution of more-than-one density matrix.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Mar 07, 2017
Speaker(s): 

When utilized appropriately, the path-integral offers an alternative to the ordinary quantum formalism of state-vectors, selfadjoint operators, and external observers -- an alternative that seems closer to the underlying reality and more in tune with quantum gravity. The basic dynamical relationships are then expressed, not by a propagator, but by the quantum measure, a set-function $\mu$ that assigns to every (suitably regular) set $E$ of histories its generalized measure $\mu(E)$.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Feb 28, 2017
Speaker(s): 

In this talk I will discuss how we might go about about performing a Bell experiment in which humans are used to decide the settings at each end.  The radical possibility we wish to investigate is that, when humans are used to decide the settings (rather than various types of random number generators), we might then expect to see a violation of Quantum Theory in agreement with the relevant Bell inequality.  Such a result, while very unlikely, would be tremendously significant for our understanding of the world (and I will discuss some interpretations).  

 

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Feb 21, 2017
Speaker(s): 

The fact that in physics concepts such as space, time, mass and energy are considered to be foundational has been conveniently serving a set of higher-level physical theories.

However, this keeps us from gaining a deeper understanding of such concepts which can in turn help us build a theory based on truly foundational concepts.

In this talk I introduce an alternate description of physical reality based on a simple foundational concept that there exist things that influence one another.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Feb 16, 2017
Speaker(s): 

The study of thermodynamics in the quantum regime has in recent years experienced somewhat of a renaissance in our community. This excitement is fueled both by the fundamental nature of the subject as well as the potential for heat machines designed with quantum advantages. Here, I will suggest the study of quantum thermodynamics restricted to a Gaussian regime, with two primary goals in mind.

Collection/Series: 
Scientific Areas: 
 

 

Tuesday Feb 14, 2017
Speaker(s): 

Hayden and Van Dam showed that starting with a separable state in Alice and Bob’s state space and a shared entangled state in a common bipartite resource space, then using local unitary operations, it is possible to produce an entangled pair in the state space while at the same time only perturbing the shared entangled state by a small amount, which can be made arbitrarily small as the dimension of the resource space grows. They referred to this as “embezzling entanglement” since numerically it “appears" that the resource state was returned exactly.

Collection/Series: 
Scientific Areas: 

Pages