Video Library

Since 2002 Perimeter Institute has been recording seminars, conference talks, public outreach events such as talks from top scientists using video cameras installed in our lecture theatres.  Perimeter now has 7 formal presentation spaces for its many scientific conferences, seminars, workshops and educational outreach activities, all with advanced audio-visual technical capabilities. 

Recordings of events in these areas are all available and On-Demand from this Video Library and on Perimeter Institute Recorded Seminar Archive (PIRSA)PIRSA is a permanent, free, searchable, and citable archive of recorded seminars from relevant bodies in physics. This resource has been partially modelled after Cornell University's arXiv.org. 

Accessibly by anyone with internet, Perimeter aims to share the power and wonder of science with this free library.

 

  

 

 

Tuesday Nov 30, 2021

There exist various scenarios for the very early universe that could potentially be the explanation for the observed properties of the cosmic microwave background. The current paradigm -- inflationary cosmology -- has rightfully received much attention, but it is not the only theoretically viable explanation. Indeed, several alternative scenarios exist, for example a contracting universe prior to a bounce or a slowly expanding emerging universe. It thus bares the question: how can we discriminate between the various theories, both from a theoretical and an observational point of view?

Collection/Series: 
Scientific Areas: 
 

 

Monday Nov 29, 2021

I will introduce the notion of Pivot Hamiltonians, a special class of Hamiltonians that can be used to "generate" both entanglement and symmetry. On the entanglement side, pivot Hamiltonians can be used to generate unitary operators that prepare symmetry-protected topological (SPT) phases by "rotating" the trivial phase into the SPT phase. This process can be iterated: the SPT can itself be used as a pivot to generate more SPTs, giving a rich web of dualities.

Collection/Series: 
Scientific Areas: 
 

 

Monday Nov 29, 2021

Perturbative QFT calculations in de Sitter are plagued by a variety of divergences. One particular kind, the secular growth terms, cause the naive perturbation expansion to break down at late times. Such contributions often arise from loop integrals, which are notoriously hard to compute in dS. We discuss an approach to evaluate such loop integrals, for a scalar field theory in a fixed de Sitter background. Our method is based on the Mellin-Barnes representation of correlation functions, which enables us to regulate divergences for scalars of any mass while preserving the symmetries of dS.

Collection/Series: 
Scientific Areas: 
 

 

Monday Nov 29, 2021

Trotter-Suzuki formula is a practical and efficient algorithm for Hamiltonian simulation. It has been widely used in quantum chemistry, quantum field theory and condensed matter physics. Usually, its error is quantified by the operator norm distance between the ideal evolution operator and the digital evolution operator. However, recently more and more papers discovered that, even in large Trotter step region, the quantity of interest can still be accurately simulated. These robustness phenomena imply a different approach of analyzing Trotter-Suzuki formulas.

Scientific Areas: 
 

 

Thursday Nov 25, 2021
Speaker(s): 

Van der Waals heterostructures provide a rich venue for exotic moir\’e phenomena. In this talk, I will present a couple of unconventional examples beyond the celebrated twisted bilayer graphene. I will start by twisted bilayer of square lattice with staggered flux, which exhibits a continuum range of magic twisting angles where an exponential reduction of Dirac velocity and bandwidths occurs. Then I will discuss moir\’e magnetism arising from twisted bilayers of antiferromagnets and also ferromagnets.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Nov 25, 2021
Speaker(s): 

The main feature of tensor models is their melonic large N limit, leading to applications ranging from random geometry and quantum gravity to  many-body quantum mechanics and conformal field theories. However, this melonic limit is lacking for tensor models with ordinary representations of O(N) or Sp(N). We demonstrate that random tensors with sextic interaction transforming under rank-5 irreducible representations of O(N) have a melonic large N limit.

Collection/Series: 
Scientific Areas: 
 

 

Thursday Nov 25, 2021

Accurate waveform models are crucial for gravitational-wave (GW) data analysis, and since numerical-relativity waveforms are computationally expensive, it is important to improve the analytical approximations for the binary dynamics. The post-Newtonian (PN) approximation is most suited for describing the inspiral of comparable-mass binaries, which are the main sources for ground-based GW detectors.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Nov 24, 2021

This talk focuses on the semiclassical behavior of the spinfoam quantum gravity in 4 dimensions. There has been long-standing confusion, known as the flatness problem, about whether the curved geometry exists in the semiclassical regime of the spinfoam amplitude. The confusion is resolved by the present work. By numerical computations, we explicitly find curved Regge geometries from the large-j Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spinfoam amplitudes on triangulations.

Collection/Series: 
Scientific Areas: 
 

 

Wednesday Nov 24, 2021

Currently, no general theory exists that explains what life is. While many definitions for life do exist, these are primarily descriptive, not predictive, and they have so far proved insufficient to explain the origins of life, or to provide rigorous constraints on what properties we might expect all examples of life to share (e.g., in our search for life in alien environments).

Collection/Series: 
 

 

Wednesday Nov 24, 2021

Suppressing noise in physical systems is of fundamental importance. As quantum computers mature, quantum error correcting codes (QECs) will be adopted in order to suppress errors to any desired level. However in the noisy, intermediate-scale quantum (NISQ) era, the complexity and scale required to adopt even the smallest QEC is prohibitive: a single logical qubit needs to be encoded into many thousands of physical qubits.

Scientific Areas: 

Pages