## Recording Details

## Abstract

Let $\mathcal{M}$ denote the moduli stack of either coherent sheaves on a smooth projective surface or Higgs sheaves on a smooth projective curve $X$. The convolution algebra structure on the Borel-Moore homology of $\mathcal{M}$ is an instance of two-dimensional cohomological Hall algebras.

In the present talk, I will describe a full categorication of the cohomological Hall algebra of $\mathcal{M}$. This is achieved by exhibiting a derived enhancement of $\mathcal{M}$. Furthermore, this method applies also to several other moduli stacks, such as the moduli stack of vector bundles with flat connections on $X$ and the moduli stack of finite-dimensional representations of the fundamental group of $X$. In the second part of the talk, I will focus on the case of curves and discuss some relations between the Betti, de Rham, and Dolbeaut categorified cohomological Hall algebras. This is based on a work in progress with Mauro Porta.