Playing this video requires the latest flash player from Adobe.
Download link (right click and 'save-as') for playing in VLC or other compatible player.
This talk will be about constraints on any model which reproduces the qubit stabilizer sub-theory. We show that the minimum number of classical bits required to specify the state of an n-qubit system must scale as ~ n(n-3)/2 in any model that does not contradict the predictions of the quantum stabilizer sub-theory. The Gottesman-Knill algorithm, which is a strong simulation algorithm is in fact, very close to this bound as it scales at ~n(2n+1). This is a result of state-independent contextuality which puts a lower bound on the minimum number of states a model requires in order to reproduce the statistics of the qubit stabilizer sub-theory.