Playing this video requires the latest flash player from Adobe.

Download link (right click and 'save-as') for playing in VLC or other compatible player.


<&

Recording Details

Speaker(s): 
PIRSA Number: 
15080064

Abstract

In recent years, tensor networks have been proposed as a useful framework for understanding holographic duality, especially the relation between quantum entanglement and space-time geometry. Most tensor networks studied so far are defined in the large scale compared with AdS radius. In this talk, I will describe a new tensor network approach which defines a holographic mapping that applies to a refined network with sub-AdS scale resolution, or even to a flat space. The idea of quantum error correction code plays an essential role in this approach. Using this new tensor network, we can study features of the bulk theory, such as how locality at sub-AdS scale emerges in a "low energy subspace" even though the whole theory is intrinsically nonlocal, as a quantum gravity theory should be.