## Recording Details

## Abstract

I will explain various features of the preprojective CoHA, a kind of universal algebra of correspondences generalising the algebras of endomorphisms of cohomology of quiver varieties considered by Nakajima. In particular I will focus on features of this algebra that become visible after viewing it as a dimensional reduction of the Kontsevich-Soibelman) critical CoHA associated to a related 3-dimensional Calabi-Yau category. Many nice features emerge from this view, e.g. an embedding in a related shuffle algebra, a formula for the graded dimension of the algebra, a flat non cocommutative deformation, a cocommutative coproduct, a geometric doubling procedure, the PBW theorem, an isomorphism with the Yangian considered by Maulik and Okounkov... I will focus on the perverse filtration, which is the key feature of my joint work with Sven Meinhardt, and gives rise to most of the above